The OWLeS IOP2b Lake-Effect Snowstorm: Shoreline Geometry and the Mesoscale Forcing of Precipitation

W. James Steenburgh Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
and
Leah S. Campbell Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Leah S. Campbell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Long-lake-axis-parallel (LLAP) lake-effect precipitation systems that form when the flow is parallel to the long axis of an elongated body of water frequently produce intense, highly localized snowfall. Conceptual models of these LLAP systems typically emphasize the role of thermally forced land breezes from the flanking shorelines, with low-level convergence and ascent centered near the lake axis. In reality, other factors such as shoreline geometry and differential surface roughness can strongly influence LLAP systems. Here a WRF Model simulation is used to examine the mesoscale forcing of lake-effect precipitation over Lake Ontario during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. In the simulation, the large-scale flow, shoreline geometry, and differential surface heating and roughness contribute to the development of three major airmass boundaries. The first is a land-breeze front that forms along a bulge in the south shoreline between St. Catharines, Ontario, Canada, and Thirty Mile Point, New York; extends downstream over eastern Lake Ontario; and plays a primary role in the LLAP system development. The second is a land-breeze front that forms along the southeast shoreline near Oswego, New York; extends downstream and obliquely across the LLAP system near Tug Hill; and influences inland precipitation processes. The third is a convergence zone that extends downstream from the north shoreline near Point Petre, Ontario, Canada; and contributes to the intermittent development of lake-effect precipitation north of the primary LLAP system. These results highlight the multifaceted nature of LLAP system development over Lake Ontario, especially the contributions of shoreline geometry and mesoscale airmass boundaries.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: W. James Steenburgh, jim.steenburgh@utah.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Abstract

Long-lake-axis-parallel (LLAP) lake-effect precipitation systems that form when the flow is parallel to the long axis of an elongated body of water frequently produce intense, highly localized snowfall. Conceptual models of these LLAP systems typically emphasize the role of thermally forced land breezes from the flanking shorelines, with low-level convergence and ascent centered near the lake axis. In reality, other factors such as shoreline geometry and differential surface roughness can strongly influence LLAP systems. Here a WRF Model simulation is used to examine the mesoscale forcing of lake-effect precipitation over Lake Ontario during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. In the simulation, the large-scale flow, shoreline geometry, and differential surface heating and roughness contribute to the development of three major airmass boundaries. The first is a land-breeze front that forms along a bulge in the south shoreline between St. Catharines, Ontario, Canada, and Thirty Mile Point, New York; extends downstream over eastern Lake Ontario; and plays a primary role in the LLAP system development. The second is a land-breeze front that forms along the southeast shoreline near Oswego, New York; extends downstream and obliquely across the LLAP system near Tug Hill; and influences inland precipitation processes. The third is a convergence zone that extends downstream from the north shoreline near Point Petre, Ontario, Canada; and contributes to the intermittent development of lake-effect precipitation north of the primary LLAP system. These results highlight the multifaceted nature of LLAP system development over Lake Ontario, especially the contributions of shoreline geometry and mesoscale airmass boundaries.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: W. James Steenburgh, jim.steenburgh@utah.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Save
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, doi:10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alestalo, M., and H. Savijärvi, 1985: Mesoscale circulations in a hydrostatic model: Coastal convergence and orographic lifting. Tellus, 37A, 156162, doi:10.1111/j.1600-0870.1985.tb00277.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and N. Gustafsson, 1994: Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snowbands over seas and lakes. Mon. Wea. Rev., 122, 10361049, doi:10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125, doi:10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., S.-H. Chou, and W. P. Byerly, 1983: The influence of coastal shape on winter mesoscale air–sea interaction. Mon. Wea. Rev., 111, 245252, doi:10.1175/1520-0493(1983)111<0245:TIOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., 1982: Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Mon. Wea. Rev., 110, 15441553, doi:10.1175/1520-0493(1982)110<1544:NSOLBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., A. J. Stamm, E. E. Chermack, G. P. Byrd, and D. Schleede, 1998: Mesoscale model simulation of the 4–5 January 1995 lake-effect snowstorm. Wea. Forecasting, 13, 893920, doi:10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528, doi:10.1175/1520-0477(1996)077<0519:ESSDIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, doi:10.1175/MWR-D-16-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1985: Fronts and jet streaks: A theoretical perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 173–215.

    • Crossref
    • Export Citation
  • Bosart, L. F., 1975: New England coastal frontogenesis. Quart. J. Roy. Meteor. Soc., 101, 957978, doi:10.1002/qj.49710143016.

  • Bosart, L. F., C. J. Vaudo, and J. H. Helsdon Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11, 12361258, doi:10.1175/1520-0450(1972)011<1236:CF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., T. A. Niziol, N. R. Donaldson, P. I. Joe, and V. T. Wood, 2007: Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part III: Simulations of shallow convective activity over and around Lake Ontario. Wea. Forecasting, 22, 839852, doi:10.1175/WAF1019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, C. A., 2007: Extreme Weather. 2nd ed. W. W. Norton and Company, 320 pp.

  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, doi:10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, doi:10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., M. M. Wheeler, J. Manobianco, J. W. Weems, and W. P. Roeder, 2005: A 7-yr climatological study of land breezes over the Florida Spaceport. J. Appl. Meteor., 44, 340356, doi:10.1175/JAM-2202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, doi:10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and W.-C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from SOWMEX/TIMREX. J. Atmos. Sci., 69, 521537, doi:10.1175/JAS-D-11-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., N. F. Laird, and D. A. R. Kristovich, 2004: Mesoscale vortices embedded within a lake-effect shoreline band. Mon. Wea. Rev., 132, 22692274, doi:10.1175/1520-0493(2004)132<2269:MVEWAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, doi:10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham, 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 11651170, doi:10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., N. F. Laird, and M. R. Hjelmfelt, 2003: Convective evolution across Lake Michigan during a widespread lake-effect snow event. Mon. Wea. Rev., 131, 643655, doi:10.1175/1520-0493(2003)131<0643:CEALMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-Effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, doi:10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., N. E. Westcott, and D. A. R. Kristovich, 2002: Effects of climate change on heavy lake-effect snowstorms near Lake Erie. J. Great Lakes Res., 28, 521536, doi:10.1016/S0380-1330(02)70603-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 345 pp.

    • Crossref
    • Export Citation
  • Laird, N. F., J. E. Walsh, and D. A. R. Kristovich, 2003a: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 21022111, doi:10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, and J. E. Walsh, 2003b: Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Wea. Rev., 131, 206221, doi:10.1175/1520-0493(2003)131<0206:IMSETM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavoie, R. L., 1972: A mesoscale numerical model of lake-effect storms. J. Atmos. Sci., 29, 10251040, doi:10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-G., and M. Xue, 2013: A study on a snowband associated with a coastal front and cold-air damming event of 3–4 February 1998 along the eastern coast of the Korean Peninsula. Adv. Atmos. Sci., 30, 263279, doi:10.1007/s00376-012-2088-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Mazon, J., S. Niemelä, D. Pino, H. Savijärvi, and T. Vihma, 2015: Snow bands over the Gulf of Finland in wintertime. Tellus, 67A, 25102, doi:10.3402/tellusa.v67.25102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015: Capabilities and limitations of convection-permitting WRF simulations of lake-effect systems over the Great Salt Lake. Wea. Forecasting, 30, 17111731, doi:10.1175/WAF-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, doi:10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. G. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, doi:10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaughan, and D. M. Schultz, 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, doi:10.1002/qj.2079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onton, D. J., and W. J. Steenburgh, 2001: Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 13181338, doi:10.1175/1520-0493(2001)129<1318:DASSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., and R. R. Braham, 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482492, doi:10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, R. L., and R. B. Sykes, 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Reinking, R. F., and Coauthors, 1993: The Lake Ontario Winter Storms (LOWS) Project. Bull. Amer. Meteor. Soc., 74, 18281828, doi:10.1175/1520-0477-74-10-1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H. I., 2012: Cold air outbreaks over high-latitude sea gulfs. Tellus, 64A, 12244, doi:10.3402/tellusa.v64i0.12244.

  • Savijärvi, H. I., 2015: Cold air outbreaks along a non-frozen sea channel: Effects of wind on snow bands. Meteor. Atmos. Phys., 127, 383391, doi:10.1007/s00703-015-0370-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts of severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, doi:10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberger, L. M., 1984: Doppler radar observation of a land-breeze cold front. Mon. Wea. Rev., 112, 24552464, doi:10.1175/1520-0493(1984)112<2455:DROOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, J. J., D. A. R. Kristovich, and M. R. Hjelmfelt, 2006: Boundary layer and microphysical influences of natural cloud seeding on a lake-effect snowstorm. Mon. Wea. Rev., 134, 18421858, doi:10.1175/MWR3151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. S. Weygandt, T. G. Smirnova, and B. E. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.11. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.]

  • Steenburgh, J., 2014: Secrets of the Greatest Snow on Earth. Utah State University Press, 186 pp.

  • Steiger, S. M., and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, doi:10.1175/MWR-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, doi:10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, D., B. Geerts, X. Jing, P. T. Bergmaier, J. R. Minder, W. J. Steenburgh, and L. S. Campbell, 2016: Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario. Mon. Wea. Rev., 144, 42214244, doi:10.1175/MWR-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1531 421 164
PDF Downloads 467 126 3