The OWLeS IOP2b Lake-Effect Snowstorm: Mechanisms Contributing to the Tug Hill Precipitation Maximum

Leah S. Campbell Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Leah S. Campbell in
Current site
Google Scholar
PubMed
Close
and
W. James Steenburgh Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lake-effect storms frequently produce a pronounced precipitation maximum over the Tug Hill Plateau (hereafter Tug Hill), which rises 500 m above Lake Ontario’s eastern shore. Here Weather Research and Forecasting Model simulations are used to examine the mechanisms responsible for the Tug Hill precipitation maximum observed during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field program. A key contributor was a land-breeze front that formed along Lake Ontario’s southeastern shoreline and extended inland and northeastward across Tug Hill, cutting obliquely across the lake-effect system. Localized ascent along this boundary contributed to an inland precipitation maximum even in simulations in which Tug Hill was removed. The presence of Tug Hill intensified and broadened the ascent region, increasing parameterized depositional and accretional hydrometeor growth, and reducing sublimational losses. The inland extension of the land-breeze front and its contribution to precipitation enhancement appear to be unidentified previously and may be important in other lake-effect storms over Tug Hill.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Leah S. Campbell, leah.campbell@utah.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Abstract

Lake-effect storms frequently produce a pronounced precipitation maximum over the Tug Hill Plateau (hereafter Tug Hill), which rises 500 m above Lake Ontario’s eastern shore. Here Weather Research and Forecasting Model simulations are used to examine the mechanisms responsible for the Tug Hill precipitation maximum observed during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field program. A key contributor was a land-breeze front that formed along Lake Ontario’s southeastern shoreline and extended inland and northeastward across Tug Hill, cutting obliquely across the lake-effect system. Localized ascent along this boundary contributed to an inland precipitation maximum even in simulations in which Tug Hill was removed. The presence of Tug Hill intensified and broadened the ascent region, increasing parameterized depositional and accretional hydrometeor growth, and reducing sublimational losses. The inland extension of the land-breeze front and its contribution to precipitation enhancement appear to be unidentified previously and may be important in other lake-effect storms over Tug Hill.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Leah S. Campbell, leah.campbell@utah.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Save
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, doi:10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and S. Nilsson, 1990: Topographically induced convective snowbands over the Baltic Sea and their precipitation distribution. Wea. Forecasting, 5, 299312, doi:10.1175/1520-0434(1990)005<0299:TICSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., and N. Gustafsson, 1994: Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snowbands over seas and lakes. Mon. Wea. Rev., 122, 10361049, doi:10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, J., 2010: Examining a southward bias in lake-effect snow band forecasts in the Northeast Regional Ensemble. Natl. Wea. Dig., 34, 6887.

    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., 1982: Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Mon. Wea. Rev., 110, 15441553, doi:10.1175/1520-0493(1982)110<1544:NSOLBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., and D. Zaff, 2007: Improving the understanding and prediction of lake-effect snowstorms in the eastern Great Lakes region. Final Rep. to the COMET Outreach Program, UCAR Award S06-58395, 41 pp. [Available online at http://www.comet.ucar.edu/outreach/details.php?id=2111.]

  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528, doi:10.1175/1520-0477(1996)077<0519:ESSDIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1965: On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Conf. on Cloud Physics, Toronto, ON, Canada, Amer. Meteor. Soc., 96–100.

  • Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, doi:10.1175/MWR-D-16-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. H., F. F. Hill, and C. W. Pardoe, 1974: Structure and mechanism of precipitation and the effect of orography in wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309330, doi:10.1002/qj.49710042505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, doi:10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8, 181193, doi:10.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, doi:10.1175/2008MWR2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., R. B. Smith, and D. A. Wesley, 2013: Theory, observations, and predictions of orographic precipitation. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, Springer, 291–344.

    • Crossref
    • Export Citation
  • Conrick, R., H. D. Reeves, and S. Zhong, 2015: The dependence of QPF on the choice of boundary and surface layer parameterization for a lake-effect snowstorm. J. Appl. Meteor. Climatol., 54, 11771190, doi:10.1175/JAMC-D-14-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, doi:10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., T. Kato, M. Yoshizaki, and A. Adachi, 2005: Numerical simulation of the quasi- stationary snowband observed over the southern coastal area of the Sea of Japan on 16 January 2001. J. Meteor. Soc. Japan, 83, 551576, doi:10.2151/jmsj.83.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, J. D., 1971: Snow squalls in the lee of Lakes Erie and Ontario. NOAA Tech. Memo. NWS ER-43, 20 pp.

  • Hjelmfelt, M. R., 1992: Orographic effects in simulated lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 120, 373377, doi:10.1175/1520-0493(1992)120<0373:OEISLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, 147, doi:10.1029/2011RG000365.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long- lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishihara, M., H. Sakakibara, and Z. Yanagisawa, 1989: Doppler radar analysis of the structure of mesoscale snow bands developed between the winter monsoon and the land breeze. J. Meteor. Soc. Japan, 67, 503520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindap, T., 2010: A severe sea-effect snow episode over the city of Istanbul. Nat. Hazards, 54, 707723, doi:10.1007/s11069-009-9496-7.

  • Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, doi:10.1002/qj.1954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-Effect Systems Field Campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, doi:10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol., 48, 232250, doi:10.1175/2008JAMC1923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N., R. Sobash, and N. Hodas, 2010: Climatological conditions of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol., 49, 10521062, doi:10.1175/2010JAMC2312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015a: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake-effect snowstorm. Wea. Forecasting, 30, 136152, doi:10.1175/WAF-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015b: Capabilities and limitations of convection- permitting WRF simulations of lake-effect systems over the Great Salt Lake. Wea. Forecasting, 30, 17111731, doi:10.1175/WAF-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., R. B. Smith, and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. V. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, doi:10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and T. Endoh, 1995: Observation of snowfall and airflow over a low mountain barrier. J. Meteor. Soc. Japan, 73, 183199.

  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E. J., and R. R. J. Braham, 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482491, doi:10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, R. L., and R. B. Sykes, 1966: Mesoscale study of a lake- effect snowstorm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and D. T. Dawson, 2013: The dependence of QPF on the choice of microphysical parameterization for lake-effect snowstorms. J. Appl. Meteor. Climatol., 52, 363377, doi:10.1175/JAMC-D-12-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., M. Murakami, T. Matsuo, and H. Mizuno, 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts of severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, doi:10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, doi:10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Special Paper 398: Tectonics, Climate, and Landscape Evolution, Geological Society of America, Boulder, CO, 1–16.

    • Crossref
    • Export Citation
  • Smith, R. B., Q. Jiang, M. G. Fearon, P. Tabary, M. Dorninger, J. D. Doyle, and R. Benoit, 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454, doi:10.1256/qj.01.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., P. Schafer, D. J. Kirshbaum, and E. Regina, 2009: Orographic precipitation in the tropics: Experiments in Dominica. J. Atmos. Sci., 66, 16981716, doi:10.1175/2008JAS2920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and D. J. Onton, 2001: Multiscale analysis of the 7 December 1998 Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 129, 12961317, doi:10.1175/1520-0493(2001)129<1296:MAOTDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and L. S. Campbell, 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, doi:10.1175/MWR-D-16-0460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, doi:10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., R. E. Stewart, G. Thompson, and J. Theriault, 2013: Microphysical processes within winter orographic cloud and precipitation systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, Springer, 345–408.

    • Crossref
    • Export Citation
  • Theeuwes, N. E., G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag, 2010: Mesoscale modeling of lake-effect snow over Lake Erie‚ sensitivity to convection, microphysics and the water temperature. Adv. Sci. Res., 4, 1522, doi:10.5194/asr-4-15-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955114, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., Y. Fujiyoshi, and G. Wakahama, 1989: Doppler radar observation of convergence band cloud formed on the west coast of Hokkaido Island. II: Cold frontal type. J. Meteor. Soc. Japan, 67, 985999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, doi:10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2012: Sensitivities of orographic precipitation to terrain geometry and upstream conditions in idealized simulations. J. Atmos. Sci., 69, 12081231, doi:10.1175/JAS-D-11-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, D., B. Geerts, X. Jing, P. T. Bergmaier, J. R. Minder, W. J. Steenburgh, and L. S. Campbell, 2016: Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario. Mon. Wea. Rev., 144, 42214244, doi:10.1175/MWR-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schar, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, K. N., W. J. Steenburgh, and T. I. Alcott, 2013: Contributions of lake-effect periods to the cool-season hydroclimate of the Great Salt Lake basin. J. Appl. Meteor. Climatol., 52, 341362, doi:10.1175/JAMC-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshihara, H., M. Kawashima, K. I. Arai, J. Inoue, and Y. Fujiyoshi, 2004: Doppler radar study on the successive development of snowbands at a convergence line near the coastal region of Hokuriku district. J. Meteor. Soc. Japan, 82, 10571079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1555 642 49
PDF Downloads 463 105 31