The Tropical Transition of the October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion Event

Edoardo Mazza Institute of Meteorology, Freie Universität, Berlin, Germany

Search for other papers by Edoardo Mazza in
Current site
Google Scholar
PubMed
Close
,
Uwe Ulbrich Institute of Meteorology, Freie Universität, Berlin, Germany

Search for other papers by Uwe Ulbrich in
Current site
Google Scholar
PubMed
Close
, and
Rupert Klein Institute of Mathematics, Freie Universität, Berlin, Germany

Search for other papers by Rupert Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 11 July 2017 to include missing information in the Acknowledgments section.

Corresponding author: Edoardo Mazza, edoardo.mazza@met.fu-berlin.de

Abstract

The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 11 July 2017 to include missing information in the Acknowledgments section.

Corresponding author: Edoardo Mazza, edoardo.mazza@met.fu-berlin.de
Save
  • Akhtar, N., J. Brauch, A. Dobler, K. Béranger, and B. Ahrens, 2014: Medicanes in an ocean-atmosphere coupled regional climate model. Nat. Hazards Earth Syst. Sci., 14, 21892201, doi:10.5194/nhess-14-2189-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., and N. D. Metz, 2016: Tropical transition of an unnamed, high-latitude, tropical cyclone over the eastern North Pacific. Mon. Wea. Rev., 144, 713736, doi:10.1175/MWR-D-15-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013, doi:10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, doi:10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2015: Sensitivity of intensifying Atlantic hurricanes to vortex structure. Quart. J. Roy. Meteor. Soc., 141, 25382551, doi:10.1002/qj.2540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavicchia, L., and H. von Storch, 2012: The simulation of medicanes in a high-resolution regional climate model. Climate Dyn., 39, 22732290, doi:10.1007/s00382-011-1220-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavicchia, L., H. von Storch, and S. Gualdi, 2014: A long-term climatology of medicanes. Climate Dyn., 43, 11831195, doi:10.1007/s00382-013-1893-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., F. Pantillon, D. Lambert, E. Richard, and C. Claud, 2012: Tropical transition of a Mediterranean storm by jet crossing. Quart. J. Roy. Meteor. Soc., 138, 596611, doi:10.1002/qj.960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cioni, G., P. Malguzzi, and A. Buzzi, 2016: Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Quart. J. Roy. Meteor. Soc., 142, 17571766, doi:10.1002/qj.2773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claud, C., B. Alhammoud, B. M. Funatsu, and J.-P. Chaboureau, 2010: Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci., 10, 21992213, doi:10.5194/nhess-10-2199-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, doi:10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., M. M. Miglietta, A. Moscatello, F. Pacifico, A. Buzzi, and R. Rotunno, 2009: Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Nat. Hazards Earth Syst. Sci., 9, 551562, doi:10.5194/nhess-9-551-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, doi:10.5194/adgeo-2-217-2005.

  • Fita, L., R. Romero, A. Luque, K. Emanuel, and C. Ramis, 2007: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci., 7, 4156, doi:10.5194/nhess-7-41-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 3C.5. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_35650.htm.]

  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homar, V., R. Romero, D. J. Stensrud, C. Ramis, and S. Alonso, 2003: Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors. Quart. J. Roy. Meteor. Soc., 129, 14691490, doi:10.1256/qj.01.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2006: The role of the occlusion process in the extratropical-to-tropical transition of Atlantic Hurricane Karen. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 10B.2. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108913.htm.]

  • Hulme, A. L., and J. E. Martin, 2009a: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, doi:10.1175/2009MWR2802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009b: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part II: Tropical transition of Hurricane Karen. Mon. Wea. Rev., 137, 36263650, doi:10.1175/2009MWR2803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Lagouvardos, K., V. Kotroni, D. Jovic, S. Nickovic, G. Kallos, and C. J. Tremback, 1999: Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteor. Appl., 6, 371383, doi:10.1017/S1350482799001309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, and J. A. Milbrandt, 2010a: Development and tropical transition of an alpine lee cyclone. Part I: Case analysis and evaluation of numerical guidance. Mon. Wea. Rev., 138, 22812307, doi:10.1175/2009MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, and J. A. Milbrandt, 2010b: Development and tropical transition of an alpine lee cyclone. Part II: Orographic influence on the development pathway. Mon. Wea. Rev., 138, 23082326, doi:10.1175/2009MWR3148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., S. Laviola, A. Malvaldi, D. Conte, V. Levizzani, and C. Price, 2013: Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett., 40, 24002405, doi:10.1002/grl.50432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moscatello, A., M. Marcello Miglietta, and R. Rotunno, 2008a: Observational analysis of a Mediterranean “hurricane” over south-eastern Italy. Weather, 63, 306311, doi:10.1002/wea.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moscatello, A., M. Marcello Miglietta, and R. Rotunno, 2008b: Numerical analysis of a Mediterranean “hurricane” over southeastern Italy. Mon. Wea. Rev., 136 , 43734397, doi:10.1175/2008MWR2512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F. P., J.-P. Chaboureau, P. J. Mascart, and C. Lac, 2013: Predictability of a Mediterranean tropical-like storm downstream of the extratropical transition of Hurricane Helene (2006). Mon. Wea. Rev., 141, 19431962, doi:10.1175/MWR-D-12-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardowitz, T., D. J. Befort, G. C. Leckebusch, and U. Ulbrich, 2016: Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteor. Z., 25, 531541, doi:10.1127/metz/2016/0582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picornell, M. A., J. Campins, and A. Jans, 2014: Detection and thermal description of medicanes from numerical simulation. Nat. Hazards Earth Syst. Sci., 14, 10591070, doi:10.5194/nhess-14-1059-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, doi:10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., G. C. Craig, and S. P. Ballard, 2000: The hurricane-like Mediterranean cyclone of January 1995. Meteor. Appl., 7, 261279, doi:10.1017/S1350482700001511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., and R. Atlas, 2001: Tropical cyclone–like vortices in the extratropics: Observational evidence and synoptic analysis. Wea. Forecasting, 16, 734, doi:10.1175/1520-0434(2001)016<0007:TCLVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., Y.-H. Kuo, D. M. Albright, K. Gao, Y.-R. Guo, and W. Huang, 2001: Analysis and modeling of a tropical-like cyclone in the Mediterranean Sea. Meteor. Atmos. Phys., 76, 183202, doi:10.1007/s007030170029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezacova, D., P. Zacharov, and Z. Sokol, 2009: Uncertainty in the area-related QPF for heavy convective precipitation. Atmos. Res., 93, 238246, doi:10.1016/j.atmosres.2008.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, doi:10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, doi:10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. A. Keyser, 1990: Fronts, jet streams, and the tropopause. NOAA Tech. Memo. ERL-WPL-182, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 75 pp.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tous, M., and R. Romero, 2011: Medicanes: Cataloguing criteria and exploration of meteorological environments. Tethys, 8, 5361.

  • Tous, M., and R. Romero, 2013: Meteorological environments associated with medicane development. Int. J. Climatol., 33, 114, doi:10.1002/joc.3428.

  • Tous, M., R. Romero, and C. Ramis, 2013: Surface heat fluxes influence on medicane trajectories and intensification. Atmos. Res., 123, 400411, doi:10.1016/j.atmosres.2012.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 16851696, doi:10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and Coauthors, 2012: Climate of the Mediterranean: Synoptic patterns, temperature, precipitation, winds, and their extremes. The Climate of the Mediterranean Region, P. Lionello, Ed., Elsevier, 301–346, doi:10.1016/B978-0-12-416042-2.00005-7.

    • Crossref
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wu, L., and Coauthors, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, doi:10.1029/2012GL053546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, K. Hodges, and N. Kitabatake, 2014: Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J. Climate, 27, 652671, doi:10.1175/JCLI-D-13-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1133 444 48
PDF Downloads 543 164 19