• Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of South Indian Ocean tropical cyclones by the Madden–Julian Oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, doi:10.1175/MWR3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, doi:10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, doi:10.1175/2009JCLI2880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886, doi:10.1175/2009JCLI3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, W. Chen, B. Yu, and X. Cao, 2016: Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmos. Sci. Lett., 17, 384391, doi:10.1002/asl.669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 19191934, doi:10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Feng, J., P. Liu, W. Chen, and X. Wang, 2015: Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16, 3237, doi:10.1002/asl2.516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2008: The global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys. Res. Lett., 35, L22808, doi:10.1029/2008GL036003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010a: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 42854304, doi:10.1175/2010MWR3474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010b: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 43054327, doi:10.1175/2010MWR3475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and T. Li, 2011: Factors controlling multiple tropical cyclone events in the western North Pacific. Mon. Wea. Rev., 139, 885894, doi:10.1175/2010MWR3340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258, doi:10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Sciences Paper 234, Colorado State University, Ft. Collins, CO, 121 pp.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Supplement of Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 36693681, doi:10.1175/MWR-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoli, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian Oscillation. Mon. Wea. Rev., 129, 29702982, doi:10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian Oscillation during austral summer. J. Climate, 12, 25382550, doi:10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden–Julian Oscillation effects. J. Geophys. Res., 111, D22101, doi:10.1029/2006JD007289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and E. Kalnay, 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus, 35A, 100118, doi:10.1111/j.1600-0870.1983.tb00189.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irwin, R. P., and R. E. Davis, 1999: The relationship between the Southern Oscillation Index and tropical cyclone tracks in the eastern North Pacific. Geophys. Res. Lett., 26, 22512254, doi:10.1029/1999GL900533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2014: The Madden–Julian oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, doi:10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteor. Soc. Japan, 72, 401412, doi:10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., L. Zhou, J. Ling, X. Fu, and G. Huang, 2016: Relationship between SST anomalies and the intensity of intraseasonal variability. Theor. Appl. Climatol., 124, 847854, doi:10.1007/s00704-015-1458-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J.-R. Bidlot, S. T. K. Lang, A. Thorpe, N. Wedi, and M. Yamaguchi, 2014: Evaluation of medium-range forecasts for Hurricane Sandy. Mon. Wea. Rev., 142, 19621981, doi:10.1175/MWR-D-13-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an Aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2 (5), doi:10.3894/JAMES.2010.2.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, and G. Wang, 2016: On the role of anomalous ocean surface temperatures for promoting the record Madden–Julian Oscillation in March 2015. Geophys. Res. Lett., 43, 472481, doi:10.1002/2015GL066984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. M. Lazare, 1992: The Canadian Climate Centre Second-Generation General Circulation Model and its equilibrium climate. J. Climate, 5, 10131044, doi:10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden–Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., and Coauthors, 2014: Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nat. Commun., 5, 3769, doi:10.1038/ncomms4769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, M., M. Sawada, T. Nasuno, and M. Satoh, 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. Geophys. Res. Lett., 42, 565571, doi:10.1002/2014GL062479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, M., and Coauthors, 2017: Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results. Geosci. Model Dev., 10, 13631381, doi:10.5194/gmd-10-1363-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Intraseasonal variations of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 1734, doi:10.2151/jmsj1965.64.1_17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 2006: Madden–Julian Oscillation activity and typhoon landfall on Japan in 2004. SOLA, 2, 136139, doi:10.2151/sola.2006-035.

  • Nasuno, T., 2013: Forecast skill of Madden–Julian Oscillation events in a global nonhydrostatic model during the CINDY2011/DYNAMO observation period. SOLA, 9, 6973, doi:10.2151/sola.2013-016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, H. Tomita, S.-I. Iga, and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oouchi, K., A. T. Noda, M. Satoh, H. Miura, H. Tomita, T. Nasuno, and S. Iga, 2009: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian Oscillation event in a global cloud-system-resolving model. SOLA, 5, 6568, doi:10.2151/sola.2009-017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, doi:10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793, doi:10.1016/j.jqsrt.2008.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, doi:10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, doi:10.1002/qj.1910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solow, A., and N. Nicholls, 1990: The relationship between the Southern Oscillation and tropical cyclone frequency in the Australian region. J. Climate, 3, 10971101, doi:10.1175/1520-0442(1990)003<1097:TRBTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takasuka, D., T. Miyakawa, M. Satoh, and H. Miura, 2015: Topographical effects on internally produced MJO-like disturbances in an Aqua-Planet version of NICAM. SOLA, 11, 170176, doi:10.2151/sola.2015-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taniguchi, H., W. Yanase, and M. Satoh, 2010: Ensemble simulation of cyclone Nargis by a global cloud-system-resolving model—Modulation of cyclogenesis by the Madden–Julian oscillation. J. Meteor. Soc. Japan, 88, 571591, doi:10.2151/jmsj.2010-317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, doi:10.2151/jmsj.86A.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63, 30913113, doi:10.1175/JAS3765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., N. E. Davidson, and M. T. Montgomery, 2007: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms. J. Atmos. Sci., 64, 31953213, doi:10.1175/JAS4023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. W. Robertson, and D. L. T. Anderson, 2012: Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bull., 61, 2328.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Amer. Meteor. Soc., 98, 163173, doi:10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Taniguchi, and M. Satoh, 2010: The genesis of tropical cyclone Nargis (2008): Environmental modulation and numerical predictability. J. Meteor. Soc. Japan, 88, 497519, doi:10.2151/jmsj.2010-314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511515, doi:10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 11
PDF Downloads 39 39 10

Genesis of Super Cyclone Pam (2015): Modulation of Low-Frequency Large-Scale Circulations and the Madden–Julian Oscillation by Sea Surface Temperature Anomalies

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • 2 Faculty of Science, Hokkaido University, Sapporo, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • 3 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
  • 4 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • 5 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
© Get Permissions
Restricted access

Abstract

Super Cyclone Pam (2015) formed in the central tropical Pacific under conditions that included El Niño Modoki and the passage of a convectively enhanced phase of the Madden–Julian oscillation (MJO) in the western Pacific. This study examines the influence that sea surface temperature anomalies (SSTAs) have on the MJO and low-frequency large-scale circulation, and establishes how they modulated the genesis of Pam. Two series of numerical experiments were conducted by using a nonhydrostatic global atmospheric model with observed (OBSSST) and climatological (CLMSST) SSTs. The results suggested that low-frequency westerly winds at 850 hPa (U850) were intensified in the central tropical Pacific due to the observed SSTA. The amplitude of the MJO simulated in OBSSST was larger than in CLMSST. In addition, the experiments initialized 26 February–2 March exhibited that the phase of the MJO in OBSSST was ahead of that in CLMSST, and that the genesis location in OBSSST was ~10° to the east of that in CLMSST. An analysis of large-scale fields indicated that a positive U850 maintained by SSTAs and intensification of U850 by the MJO modified distribution of large-scale cyclonic vorticity and precipitable water. These changes in large-scale fields modified the location and timing of intensification of the disturbance that become Pam and resulted in Pam’s genesis location being 10° farther east with slight impact on its genesis probability. Additional experiments showed that SSTAs in the central tropical Pacific were the dominant cause of modifications to large-scale fields, the MJO, and Pam’s genesis location.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masuo Nakano, masuo@jamstec.go.jp

Abstract

Super Cyclone Pam (2015) formed in the central tropical Pacific under conditions that included El Niño Modoki and the passage of a convectively enhanced phase of the Madden–Julian oscillation (MJO) in the western Pacific. This study examines the influence that sea surface temperature anomalies (SSTAs) have on the MJO and low-frequency large-scale circulation, and establishes how they modulated the genesis of Pam. Two series of numerical experiments were conducted by using a nonhydrostatic global atmospheric model with observed (OBSSST) and climatological (CLMSST) SSTs. The results suggested that low-frequency westerly winds at 850 hPa (U850) were intensified in the central tropical Pacific due to the observed SSTA. The amplitude of the MJO simulated in OBSSST was larger than in CLMSST. In addition, the experiments initialized 26 February–2 March exhibited that the phase of the MJO in OBSSST was ahead of that in CLMSST, and that the genesis location in OBSSST was ~10° to the east of that in CLMSST. An analysis of large-scale fields indicated that a positive U850 maintained by SSTAs and intensification of U850 by the MJO modified distribution of large-scale cyclonic vorticity and precipitable water. These changes in large-scale fields modified the location and timing of intensification of the disturbance that become Pam and resulted in Pam’s genesis location being 10° farther east with slight impact on its genesis probability. Additional experiments showed that SSTAs in the central tropical Pacific were the dominant cause of modifications to large-scale fields, the MJO, and Pam’s genesis location.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masuo Nakano, masuo@jamstec.go.jp
Save