Analyzing Simulated Convective Bursts in Two Atlantic Hurricanes. Part II: Intensity Change due to Bursts

Andrew T. Hazelton Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Andrew T. Hazelton in
Current site
Google Scholar
PubMed
Close
,
Robert E. Hart Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Robert E. Hart in
Current site
Google Scholar
PubMed
Close
, and
Robert F. Rogers NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates convective burst (CB) evolution in Weather Research and Forecasting (WRF) Model simulations of two tropical cyclones (TCs), focusing on the relationship between CBs and TC intensity change. Analysis of intensity change in the simulations shows that there are more CBs inside the radius of maximum winds (RMW) during times when the TCs are about to intensify, while weakening/steady times are associated with more CBs outside the RMW, consistent with past observational and theoretical studies. The vertical mass flux distributions show greater vertical mass flux at upper levels both from weaker updrafts and CBs for intensifying cases. The TC simulations are further dissected by past intensity change, and times of sustained intensification have more CBs than times when the TC has been weakening but then intensifies. This result suggests that CB development may not always be predictive of intensification, but rather may occur as a result of ongoing intensification and contribute to ongoing intensification. Abrupt short-term intensification is found to be associated with an even higher density of CBs inside the RMW than is slower intensification. Lag correlations between CBs and intensity reveal a broad peak, with the CBs leading pressure falls by 0–3 h. These relationships are further confirmed by analysis of individual simulation periods, although the relationship can vary depending on environmental conditions and the previous evolution of the TC. These results show that increased convection due to both weak updrafts and CBs inside the RMW is favorable for sustained TC intensification and show many details of the typical short-term response of the TC core to CBs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Program in Atmospheric and Oceanic Science, Princeton University, and NOAA/GFDL, Princeton, New Jersey.

Corresponding author: Andrew Hazelton, andy.hazelton.1003@gmail.com

Abstract

This paper investigates convective burst (CB) evolution in Weather Research and Forecasting (WRF) Model simulations of two tropical cyclones (TCs), focusing on the relationship between CBs and TC intensity change. Analysis of intensity change in the simulations shows that there are more CBs inside the radius of maximum winds (RMW) during times when the TCs are about to intensify, while weakening/steady times are associated with more CBs outside the RMW, consistent with past observational and theoretical studies. The vertical mass flux distributions show greater vertical mass flux at upper levels both from weaker updrafts and CBs for intensifying cases. The TC simulations are further dissected by past intensity change, and times of sustained intensification have more CBs than times when the TC has been weakening but then intensifies. This result suggests that CB development may not always be predictive of intensification, but rather may occur as a result of ongoing intensification and contribute to ongoing intensification. Abrupt short-term intensification is found to be associated with an even higher density of CBs inside the RMW than is slower intensification. Lag correlations between CBs and intensity reveal a broad peak, with the CBs leading pressure falls by 0–3 h. These relationships are further confirmed by analysis of individual simulation periods, although the relationship can vary depending on environmental conditions and the previous evolution of the TC. These results show that increased convection due to both weak updrafts and CBs inside the RMW is favorable for sustained TC intensification and show many details of the typical short-term response of the TC core to CBs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Program in Atmospheric and Oceanic Science, Princeton University, and NOAA/GFDL, Princeton, New Jersey.

Corresponding author: Andrew Hazelton, andy.hazelton.1003@gmail.com
Save
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, doi:10.1175/MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., K. R. Quinlan, and D. M. Mach, 2010: Intense convection observed by NASA ER-2 in Hurricane Emily (2005). Mon. Wea. Rev., 138, 765780, doi:10.1175/2009MWR3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, doi:10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, doi:10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, doi:10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21, 52425253, doi:10.1175/2008JCLI1868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, doi:10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685706, doi:10.1175/1520-0469(2001)058<0685:TCVCFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494, doi:10.1175/2010JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, doi:10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, P. D. Reasor, and A. C. Didlake Jr., 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 36173639, doi:10.1175/JAS-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883903, doi:10.1175/MWR-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: Bursts formation and development. Mon. Wea. Rev., 145, 30733094, doi:10.1175/MWR-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, doi:10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 11641176, doi:10.1175/MWR-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, doi:10.1175/JCLI-D-12-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 41944217, doi:10.1175/JAS-D-14-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., and J. B. Halverson, 2011: How much tropical cyclone intensification can result from the energy released inside a convective burst? J. Geophys. Res., 116, D20118, doi:10.1029/2011JD015954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2005: Hurricane intensification detected by continuously monitoring tall precipitation in the eyewall. Geophys. Res. Lett., 32, L20819, doi:10.1029/2005GL023583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone pressure–wind relationships. Wea. Forecasting, 22, 7188, doi:10.1175/WAF965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, doi:10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, doi:10.1175/JAS-D-12-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, doi:10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687, doi:10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, K. S. Griffin, and C. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, doi:10.1175/JAMC-D-11-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRL, 2015: NRL tropical cyclone page. Naval Research Laboratory. [Available online at http://www.nrlmry.navy.mil/TC.html.]

  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247, doi:10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, doi:10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, G. R. Alvey, E. J. Zipser, and H. Jiang, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, doi:10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effect of a warm ocean ring on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, doi:10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546, doi:10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, doi:10.1175/JAS-D-13-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, doi:10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, doi:10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, doi:10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuge, X., J. Ming, and Y. Wang, 2015: Reassessing the use of inner-core hot towers to predict tropical cyclone rapid intensification. Wea. Forecasting, 30, 12651279, doi:10.1175/WAF-D-15-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2899 1842 46
PDF Downloads 647 199 15