Abstract
Despite dramatic improvements over the last decades, operational NWP forecasts still occasionally suffer from abrupt drops in their forecast skill. Such forecast skill “dropouts” may occur even in a perfect NWP system because of the stochastic nature of NWP but can also result from flaws in the NWP system. Recent studies have shown that dropouts occur due not to a model’s deficiencies but to misspecified initial conditions, suggesting that they could be mitigated by improving the quality control (QC) system so that the observation-minus-background (O-B) innovations that would degrade a forecast can be detected and rejected. The ensemble forecast sensitivity to observations (EFSO) technique enables for the quantification of how much each observation has improved or degraded the forecast. A recent study has shown that 24-h EFSO can detect detrimental O-B innovations that caused regional forecast skill dropouts and that the forecast can be improved by not assimilating them. Inspired by that success, a new QC method is proposed, termed proactive QC (PQC), that detects detrimental innovations 6 h after the analysis using EFSO and then repeats the analysis and forecast without using them. PQC is implemented and tested on a lower-resolution version of NCEP’s operational global NWP system. It is shown that EFSO is insensitive to the choice of verification and lead time (24 or 6 h) and that PQC likely improves the analysis, as attested to by forecast improvements of up to 5 days and beyond. Strategies for reducing the computational costs and further optimizing the observation rejection criteria are also discussed.
Denotes content that is immediately available upon publication as open access.
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.