Numerical Simulations of the 2013 Alberta Flood: Dynamics, Thermodynamics, and the Role of Orography

Shawn M. Milrad Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida

Search for other papers by Shawn M. Milrad in
Current site
Google Scholar
PubMed
Close
,
Kelly Lombardo Department of Marine Sciences, University of Connecticut–Avery Point, Groton, Connecticut

Search for other papers by Kelly Lombardo in
Current site
Google Scholar
PubMed
Close
,
Eyad H. Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad H. Atallah in
Current site
Google Scholar
PubMed
Close
, and
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn M. Milrad, milrads@erau.edu

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn M. Milrad, milrads@erau.edu
Save
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528, doi:10.1175/1520-0477(1996)077<0519:ESSDIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, doi:10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. I, Oxford University Press, 431 pp.

  • Buzzi, A., N. Taraglione, and P. Malguzzi, 1998: Numerical simulations of the 1994 Piedmont Flood: Role of orography and moist processes. Mon. Wea. Rev., 126, 23692383, doi:10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, doi:10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617, doi:10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flesch, T. K., and G. W. Reuter, 2012: WRF Model simulation of two Alberta flooding events and the impact of topography. J. Hydrometeor., 13, 695708, doi:10.1175/JHM-D-11-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., and A. Sobel, 2005: Moist dynamics and orographic precipitation in Northern and Central California during the New Year’s Flood of 1997. Mon. Wea. Rev., 133, 15941612, doi:10.1175/MWR2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 2008: The application of Fred Sanders’ teaching to current research on extreme cold-season precipitation events in the Saint Lawrence River Valley region. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 241–250, doi: 10.1175/0065-9401-33.55.241.

    • Crossref
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., R. S. Schneider, and S. L. Fauver, 1999: A study of heavy rainfall events during the Great Midwest flood of 1993. Wea. Forecasting, 14, 701712, doi:10.1175/1520-0434(1999)014<0701:ASOHRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780, doi:10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S., M. DesJardins, and P. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, and F. Chen, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013? Geophys. Res. Lett., 40, 64056410, doi:10.1002/2013GL058282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and B. A. Colle, 2013: Processes controlling the structure and longevity of two quasi-linear convective systems crossing the southern New England coast. Mon. Wea. Rev., 141, 37103734, doi:10.1175/MWR-D-12-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., B. Brasnett, and S. Gagnon, 2007: A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.v450101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-latitude Atmospheric Dynamics. John Wiley and Sons, 324 pp.

  • Milrad, S. M., J. R. Gyakum, and E. H. Atallah, 2015: A meteorological analysis of the 2013 Alberta Flood: Antecedent large-scale flow pattern and synoptic-dynamic characteristics. Mon. Wea. Rev., 143, 28172841, doi:10.1175/MWR-D-14-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A., R. S. Schumacher, and S. M. Kreidenweis, 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., 143, 49434962, doi:10.1175/MWR-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579, doi:10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA National Centers for Environmental Information (NCEI), 2016: Global Forecast System (GFS) analysis archive. Accessed January 2016. [Available online at https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.]

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Pomeroy, J. W., R. E. Stewart, and P. H. Whitfield, 2016: The 2013 flood event in the South Saskatchewan and Elk River basins: Causes, assessment and damages. Can. Water Resour. J., 41, 105117, doi:10.1080/07011784.2015.1089190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part I: An aerological study of blocking action. Tellus, 2A, 196211.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, doi:10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2015: Influence of terrain resolution on banded convection in the lee of the Rocky Mountains. Mon. Wea. Rev., 143, 13991416, doi:10.1175/MWR-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C., 2014: Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF forecasts. Wea. Forecasting, 29, 393402, doi:10.1175/WAF-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Teufel, B., and Coauthors, 2017: Investigation of the 2013 Alberta flood from weather and climate perspectives. Climate Dyn., 48, 28812899, doi:10.1007/s00382-016-3239-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4167 2566 89
PDF Downloads 626 49 6