• Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1984: Boundary layer thermodynamics of a High Plains severe storm. Mon. Wea. Rev., 112, 21992211, doi:10.1175/1520-0493(1984)112<2199:BLTOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. I, Observations and Theory of Weather Systems, Oxford University Press, 431 pp.

  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II, Observations and Theory of Weather Systems, Oxford University Press, 594 pp.

  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951, doi:10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and J. C. Snyder, 2015: An observational study of the effects of dry air produced in dissipating convective storms on the predictability of severe weather. Wea. Forecasting, 30, 79114, doi:10.1175/WAF-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, doi:10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., D. D. Turner, U. Löhnert, and S. Castleberry, 2015: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions. J. Appl. Meteor. Climatol., 54, 23052319, doi:10.1175/JAMC-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brock, F. V., K. Crawford, R. Elliott, G. Cuperus, S. Stadler, H. Johnson, and M. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1934: Physical and Dynamical Meteorology. Cambridge University Press, 411 pp.

  • Buban, M. S., and C. L. Ziegler, 2016: The formation of small-scale atmospheric vortices via horizontal shearing instability. J. Atmos. Sci., 73, 20612084, doi:10.1175/JAS-D-14-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, R. A., and D. M. Schultz, 2005: Contraction rate and its relationship to frontogenesis, the Lyapunov exponent, fluid trapping, and airstream boundaries. Mon. Wea. Rev., 133, 13531369, doi:10.1175/MWR2922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., K. R. Knupp, and D. Herzmann, 2009: The spectacular undular bore in Iowa on 2 October 2007. Mon. Wea. Rev., 137, 495503, doi:10.1175/2008MWR2518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and D. Keyser, 1999: Frontogenesis and frontal motion due to confluent deformation with a translating dilatation axis. Quart. J. Roy. Meteor. Soc., 125, 25632573, doi:10.1002/qj.49712555911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990: Prefrontal troughs over southern Australia. Part I: A climatology. Wea. Forecasting, 5, 2231, doi:10.1175/1520-0434(1990)005<0022:PTOSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., J. A. Otkin, J. E. Martin, and D. D. Turner, 2010: The life cycle of an undular bore and its interaction with a shallow intense cold front. Mon. Wea. Rev., 138, 886908, doi:10.1175/2009MWR3028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., and H. B. Bluestein, 2011: Polarimetric Doppler radar observations of Kelvin–Helmholtz waves in a winter storm. J. Atmos. Sci., 68, 16761702, doi:10.1175/2011JAS3566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, doi:10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, T. A., and H. B. Bluestein, 1998: Prefrontal wind-shift lines in the plains of the United States. Mon. Wea. Rev., 126, 141166, doi:10.1175/1520-0493(1998)126<0141:PWSLIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

    • Crossref
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, doi:10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and L. J. Miller, 1993: First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc., 74, 179188, doi:10.1175/1520-0477(1993)074<0179:FREFCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, doi:10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. Desjardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamant, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, doi:10.1175/2007JTECHA951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., and S. G. Bigler, 1958: Radar echoes from a cloudless cold front. J. Meteor., 15, 494501, doi:10.1175/1520-0469(1958)015<0494:REFACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, doi:10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, H. C., 1973: Some observations of the microstructure of dry cold fronts. J. Appl. Meteor., 12, 658663, doi:10.1175/1520-0450(1973)012<0658:SOOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and A. Shapiro, 2007: Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J. Atmos. Oceanic Technol., 24, 12151230, doi:10.1175/JTECH2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, doi:10.1175/JTECH-D-10-05048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451164, doi:10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, doi:10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol., 12, 257267, doi:10.1175/1520-0426(1995)012<0257:URMRVV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J., and J. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, doi:10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1999: A proposed method of surface map analysis. Mon. Wea. Rev., 127, 945955, doi:10.1175/1520-0493(1999)127<0945:APMOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505521, doi:10.1175/1520-0477(1995)076<0505:ACFDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 20402053, doi:10.1175/1520-0493(2004)132<2040:CFWAWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2005: A review of cold fronts with prefrontal troughs and wind shifts. Mon. Wea. Rev., 133, 24492472, doi:10.1175/MWR2987.1.

  • Schultz, D. M., 2008: Perspectives on Fred Sanders’ research on cold fronts. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 109–126.

    • Crossref
    • Export Citation
  • Schultz, D. M., and P. J. Roebber, 2008: The fiftieth anniversary of Sanders (1955): A mesoscale model simulation of the cold front of 17–18 April 1953. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 127–143.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 16341639, doi:10.1175/1520-0493(1984)112<1634:MTMOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1982: Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech., 14, 213234, doi:10.1146/annurev.fl.14.010182.001241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stonitsch, J. R., and P. M. Markowski, 2007: Unusually long duration, multiple-Doppler radar observations of a front in a convective boundary layer. Mon. Wea. Rev., 135, 93117, doi:10.1175/MWR3261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., W. F. Feltz, and R. A. Ferrare, 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 13011317, doi:10.1175/1520-0477(2000)081<1301:CWBPFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238, doi:10.1175/JTECH1906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungarish, M., 2009: An Introduction to Gravity Currents and Intrusions. CRC Press, 489 pp.

    • Crossref
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2002: Airborne observations of a front near a col during FASTEX. Mon. Wea. Rev., 130, 18981912, doi:10.1175/1520-0493(2002)130<1898:AOOAFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, doi:10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, doi:10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 24432472, doi:10.1175/MWR3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1998: Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36, 661668, doi:10.1109/36.662746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 4
PDF Downloads 19 19 4

A Comparison of the Finescale Structures of a Prefrontal Wind-Shift Line and a Strong Cold Front in the Southern Plains of the United States

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • 3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • 4 Department of Geography, Ohio University, Athens, Ohio
© Get Permissions
Restricted access

Abstract

The objectives of this study are to determine the finescale characteristics of the wind and temperature fields associated with a prefrontal wind-shift line and to contrast them with those associated with a strong cold front. Data from a mobile, polarimetric, X-band, Doppler radar and from a surveillance S-band radar, temperature profiles retrieved from a thermodynamic sounder, and surface observations from the Oklahoma Mesonet are used to analyze a prefrontal wind-shift line in Oklahoma on 11 November 2013. Data from the same mobile radar and the Oklahoma Mesonet are used to identify the finescale characteristics of the wind field associated with a strong surface cold front in Oklahoma on 9 April 2013. It is shown that the prefrontal wind-shift line has a kinematic and thermodynamic structure similar to that of an intrusion (elevated density current), while the cold front has a kinematic structure similar to that of a classic density current. Other characteristics of the prefrontal wind-shift line and front are also discussed. Evidence of waves generated at the leading edge of the prefrontal wind-shift line is presented.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0403.s1.

Corresponding author: Howard B. Bluestein, hblue@ou.edu

Abstract

The objectives of this study are to determine the finescale characteristics of the wind and temperature fields associated with a prefrontal wind-shift line and to contrast them with those associated with a strong cold front. Data from a mobile, polarimetric, X-band, Doppler radar and from a surveillance S-band radar, temperature profiles retrieved from a thermodynamic sounder, and surface observations from the Oklahoma Mesonet are used to analyze a prefrontal wind-shift line in Oklahoma on 11 November 2013. Data from the same mobile radar and the Oklahoma Mesonet are used to identify the finescale characteristics of the wind field associated with a strong surface cold front in Oklahoma on 9 April 2013. It is shown that the prefrontal wind-shift line has a kinematic and thermodynamic structure similar to that of an intrusion (elevated density current), while the cold front has a kinematic structure similar to that of a classic density current. Other characteristics of the prefrontal wind-shift line and front are also discussed. Evidence of waves generated at the leading edge of the prefrontal wind-shift line is presented.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0403.s1.

Corresponding author: Howard B. Bluestein, hblue@ou.edu

Supplementary Materials

    • Supplemental Materials (ZIP 7.15 MB)
Save