• Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2009: On the impact of WRF Model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575594, doi:10.1175/2008WAF2007101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., 2013: Nonlinear characteristics of ensemble perturbation evolution and their application to forecasting high-impact events. Wea. Forecasting, 28, 13531365, doi:10.1175/WAF-D-12-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and C. Hoose, 2015: Spatial and temporal variability of clouds and precipitation over Germany: Multiscale simulations across the “gray zone.” Atmos. Chem. Phys., 15, 12 36112 384, doi:10.5194/acp-15-12361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, doi:10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brousseau, P., Y. Seity, D. Ricard, and J. Léger, 2016: Improvement of the forecast of convective activity from the AROME-France system. Quart. J. Roy. Meteor. Soc., 142, 22312243, doi:10.1002/qj.2822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and C. D. Kummerow, 2015: Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S. J. Adv. Model. Earth Syst., 7, 12481264, doi:10.1002/2015MS000497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. A. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, doi:10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, doi:10.1175/2010WAF2222404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, doi:10.1175/2010MWR3624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia Jr., M. Xue, and F. Kong, 2012a: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012b: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. Gao, P. Marsh, T. Smith, J. Kain, J. Correia, M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, doi:10.1175/WAF-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, doi:10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593618, doi:10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. B. Wolfe, W. J. Steenburgh, D. E. Kingsmill, J. A. W. Cox, and J. C. Shafer, 2005: High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon. Wea. Rev., 133, 29472971, doi:10.1175/MWR3017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. G. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, R. G. Bullock, and J. H. Gotway, 2009: The Method for Object-based Diagnostic Evaluation (MODE) applied to WRF forecasts from the 2005 Spring Program. Wea. Forecasting, 24, 12521267, doi:10.1175/2009WAF2222241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and B. Zhou, 2011: A dynamical performance-ranking method for predicting individual ensemble member performance and its application to ensemble averaging. Mon. Wea. Rev., 139, 32843303, doi:10.1175/MWR-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, doi:10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2008: Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, doi:10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. A. Colle, and C. F. Mass, 2005: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62, 34743492, doi:10.1175/JAS3549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, doi:10.1016/j.atmosres.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 21242137, doi:10.1002/qj.877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, doi:10.1175/MWR-D-12-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478, doi:10.1175/2007JAS2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Johnson, A., and X. Wang, 2013: Object-based evaluation of a storm-scale ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment. Mon. Wea. Rev., 141, 10791098, doi:10.1175/MWR-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693, doi:10.1175/MWR-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, doi:10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2008: Real-time storm-scale ensemble forecast experiment—Analysis of 2008 Spring Experiment data. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.3. [Available online at https://ams.confex.com/ams/pdfpapers/141827.pdf.]

  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/pdfpapers/154118.pdf.]

  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, doi:10.1002/qj.2238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J., and W. A. Gallus, 2016: On contrasting ensemble simulations of two Great Plains bow echoes. Wea. Forecasting, 31, 787810, doi:10.1175/WAF-D-15-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, doi:10.3402/tellusa.v21i3.10086.

    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713725, doi:10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, doi:10.1256/003590002320603584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., A. Morales, and C. Villanueva-Birriel, 2015: Concurrent sensitivities of an idealized deep convective storm to parameterization of microphysics, horizontal grid resolution, and environmental static stability. Mon. Wea. Rev., 143, 20822104, doi:10.1175/MWR-D-14-00271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, doi:10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta, C., Z. B. Bouallègue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, doi:10.1029/2011JD016581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, doi:10.1175/WAF-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, doi:10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854866, doi:10.1002/qj.2686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126, 649667, doi:10.1002/qj.49712656313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. Anderson, and M. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schellander-Gorgas, T., Y. Wang, F. Meier, F. Weidle, C. Wittmann, and A. Kann, 2017: On the forecast skill of a convection-permitting ensemble. Geosci. Model Dev., 10, 3556, doi:10.5194/gmd-10-35-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, doi:10.1175/MWR-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and A. J. Clark, 2014: Evaluation of ensemble configurations for the analysis and prediction of heavy-rain-producing mesoscale convective systems. Mon. Wea. Rev., 142, 41084138, doi:10.1175/MWR-D-13-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2014: Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF forecasts. Wea. Forecasting, 29, 393402, doi:10.1175/WAF-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, doi:10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., doi:10.1175/MWR-D-16-0400.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015a: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, doi:10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015b: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, doi:10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584, doi:10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, doi:10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne, and M. L. Weisman, 2016a: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, doi:10.1175/WAF-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016b: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, doi:10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. K. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, doi:10.1175/MWR-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, doi:10.1029/97JD01864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennant, W., 2015: Improving initial condition perturbations for MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 141, 23242336, doi:10.1002/qj.2524.

  • Theis, S. E., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257268, doi:10.1017/S1350482705001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VandenBerg, M. A., M. C. Coniglio, and A. J. Clark, 2014: Comparison of next-day convection-allowing forecasts of storm motion on 1- and 4-km grids. Wea. Forecasting, 29, 878893, doi:10.1175/WAF-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parameterization. Quart. J. Roy. Meteor. Soc., 141, 433448, doi:10.1002/qj.2363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, doi:10.1175/2010MWR3487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729747, doi:10.1175/1520-0493(2001)129<0729:EOASRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. A. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Evans, and L. Bosart, 2013: The 8 May 2009 Superderecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863892, doi:10.1175/WAF-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, doi:10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, doi:10.1175/MWR-D-13-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, doi:10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 467 pp.

  • Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and B. G. Brown, 2014: Beyond the basics: Evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, doi:10.1175/WAF-D-13-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Towards numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1. [Available online at http://ams.confex.com/ams/pdfpapers/124587.pdf.]

  • Xue, M., and Coauthors, 2010: CAPS realtime storm-scale ensemble and convection-resolving high-resolution forecasts for the NOAA Hazardous Weather Testbed 2010 Spring Experiment. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/pdfpapers/176056.pdf.]

  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, doi:10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 35
PDF Downloads 88 88 24

Toward 1-km Ensemble Forecasts over Large Domains

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Precipitation forecasts from convection-allowing ensembles with 3- and 1-km horizontal grid spacing were evaluated between 15 May and 15 June 2013 over central and eastern portions of the United States. Probabilistic forecasts produced from 10- and 30-member, 3-km ensembles were consistently better than forecasts from individual 1-km ensemble members. However, 10-member, 1-km probabilistic forecasts usually were best, especially over the first 12 h and at rainfall rates ≥ 5.0 mm h−1 at later times. Further object-based investigation revealed that better 1-km forecasts at heavier rainfall rates were associated with more accurate placement of mesoscale convective systems compared to 3-km forecasts. The collective results indicate promise for 1-km ensembles once computational resources can support their operational implementation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Craig Schwartz, schwartz@ucar.edu

Abstract

Precipitation forecasts from convection-allowing ensembles with 3- and 1-km horizontal grid spacing were evaluated between 15 May and 15 June 2013 over central and eastern portions of the United States. Probabilistic forecasts produced from 10- and 30-member, 3-km ensembles were consistently better than forecasts from individual 1-km ensemble members. However, 10-member, 1-km probabilistic forecasts usually were best, especially over the first 12 h and at rainfall rates ≥ 5.0 mm h−1 at later times. Further object-based investigation revealed that better 1-km forecasts at heavier rainfall rates were associated with more accurate placement of mesoscale convective systems compared to 3-km forecasts. The collective results indicate promise for 1-km ensembles once computational resources can support their operational implementation.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Craig Schwartz, schwartz@ucar.edu
Save