• Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, doi:10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Impacts of the mountain–plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over northern China. Atmos. Chem. Phys., 13, 69656982, doi:10.5194/acp-13-6965-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., F. Zhang, and J. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 27902810, doi:10.1175/MWR-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884891, doi:10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: 2. Impact of the diurnal monsoon variability. J. Geophys. Res., 114, D21105, doi:10.1029/2009JD012181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, T. Iwasaki, and K. Ueno, 2012: Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements. J. Geophys. Res., 117, D06106, doi:10.1029/2011JD017056.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, M. Sawada, and T. Iwasaki, 2013: Influence of summer monsoon diurnal cycle on moisture transport and precipitation over eastern China. J. Geophys. Res. Atmos., 118, 31633177, doi:10.1002/jgrd.50337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., R. Yoshida, W. Sha, T. Iwasaki, and H. Qin, 2014: Convective instability associated with the eastward-propagating rainfall episodes over eastern China during the warm season. J. Climate, 27, 23312339, doi:10.1175/JCLI-D-13-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., R. Yu, J. Li, W. Yuan, and T. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River Valley. J. Climate, 23, 905917, doi:10.1175/2009JCLI3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2013: Persistent extreme precipitation events in China during 1951-2010. Climate Res., 57, 143155, doi:10.3354/cr01171.

  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, doi:10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, doi:10.2151/jmsj1965.70.1B_373.

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. Zhang, Y. L. Chen, Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, doi:10.1175/JCLI-D-13-00571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., R. Rotunno, and Q. Zhang, 2015: Analysis of WRF-simulated diurnal boundary layer winds in eastern China using a simple 1D model. J. Atmos. Sci., 72, 714727, doi:10.1175/JAS-D-14-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Gale, J. J., J. W. A. Gallus, and K. A. Jungbluth, 2002: Toward improved prediction of mesoscale convective system dissipation. Wea. Forecasting, 17, 856872, doi:10.1175/1520-0434(2002)017<0856:TIPOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, B., and H. Yamada, 2007: Diurnal variations of the Meiyu/Baiu rain belt. SOLA, 3, 6164, doi:10.2151/sola.2007-016.

  • Hayashi, S., K. Aranami, and K. Saito, 2008: Statistical verification of short term NWP by NHM and WRF-ARW with 20 km horizontal resolution around Japan and Southeast Asia. SOLA, 4, 133136, doi:10.2151/sola.2008-034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, M., H. Liu, B. Wang, and D.-L. Zhang, 2016: A modeling study of a low-level jet along the Yun-Gui Plateau in south China. J. Appl. Meteor. Climatol., 55, 4160, doi:10.1175/JAMC-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., and J. C. L. Chan, 2011: Maintenance mechanisms for the early-morning maximum summer rainfall over southeast China. Quart. J. Roy. Meteor. Soc., 137, 959968, doi:10.1002/qj.815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809, doi:10.1029/2006GL027022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

  • Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776, doi:10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81, 12611270, doi:10.1175/1520-0477(2000)081<1261:AROTFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., T. Takeda, K. Tsuboki, K. Kato, M. Kawashima, and Y. Fujiyoshi, 2007: Nocturnal evolution of cloud clusters over eastern China during the intensive observation periods of GAME/HUBEX in 1998 and 1999. J. Meteor. Soc. Japan, 85, 2545, doi:10.2151/jmsj.85.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-B., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River Basin. J. Geophys. Res., 113, D22101, doi:10.1029/2008JD010072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-B., L.-J. Li, and B. Wang, 2012: Low-level jets over southeast China: The warm season climatology of the summer of 2003. Atmos. Oceanic Sci. Lett., 5, 394400, doi:10.1080/16742834.2012.11447017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River Basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in east China. Mon. Wea. Rev., 142, 203221, doi:10.1175/MWR-D-13-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D., and J. M. Fritsch, 1991: Mesoscale convective complexes in the western Pacific region. Mon. Wea. Rev., 119, 29782992, doi:10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, doi:10.1175/2010JCLI3515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level 3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 2000: Large- and meso-α-scale characteristics of Meiyu/Baiu front associated with intense rainfalls in 1-10 July 1991. J. Meteor. Soc. Japan, 78, 141157, doi:10.2151/jmsj1965.78.2_141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, doi:10.1175/MWR-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, doi:10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J., W. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 327, doi:10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., 2012: The JMA nonhydrostatic model and its applications to operation and research. Atmospheric Model Applications, I. Yucel, Ed., InTech, 85–110, doi:10.5772/35368.

    • Crossref
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

  • Schumacher, R. S., and R. H. Johnson, 2009: Extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, doi:10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. Uyeda, 2002: Effective factors in the development of deep convective clouds over the wet region of eastern China during the summer monsoon season. J. Meteor. Soc. Japan, 80, 13951414, doi:10.2151/jmsj.80.1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and F. Zhang, 2012: Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the mei-yu front over the East China plains. Mon. Wea. Rev., 140, 379397, doi:10.1175/MWR-D-11-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., G. Jiang, X. Ren, and X.-Q. Yang, 2016: Role of intraseasonal oscillation in the persistent extreme precipitation over the Yangtze River Basin during June 1998. J. Geophys. Res. Atmos., 121, 10 45310 469, doi:10.1002/2016JD025077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, doi:10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, doi:10.1175/JAS-D-14-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, doi:10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 16061629, doi:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, H.-L. Huang, R. E. Carbone, and S.-W. Chang, 2012: Synoptic conditions associated with propagating and non-propagating cloud/rainfall episodes during the warm season over the East Asian continent. Mon. Wea. Rev., 140, 721747, doi:10.1175/MWR-D-11-00067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448465, doi:10.1175/2010JCLI3719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., X. Shi, Y. Wang, S. Peng, and X. Shi, 2008: Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China. Meteor. Atmos. Phys., 100, 217231, doi:10.1007/s00703-008-0305-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki, 2007: Thermodynamic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu-Baiu front. J. Meteor. Soc. Japan, 85, 663685, doi:10.2151/jmsj.85.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, S., D. Chen, and Y. Xie, 2009: Diurnal variations of precipitation during the warm season over China. Int. J. Climatol., 29, 11541170, doi:10.1002/joc.1758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., Y. Xu, T. Zhou, and J. Li, 2007: Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703, doi:10.1029/2007GL030315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, H. Chen, J. Li, and M. Zhang, 2010: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J. Climate, 23, 66846695, doi:10.1175/2010JCLI3805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 33073320, doi:10.1175/JCLI-D-11-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., S. Tao, and Q. Zhang, 2002: Large and meso-α scale characteristics of intense rainfall in the mid and lower reaches of the Yangtze River. Chin. Sci. Bull., 47, 779786, doi:10.1360/02tb9176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010, doi:10.1175/2008JCLI2028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 15
PDF Downloads 94 94 21

Diurnal Cycle of a Heavy Rainfall Corridor over East Asia

View More View Less
  • 1 Center for Monsoon and Environment Research, School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
  • 2 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
  • 3 Center for Monsoon and Environment Research, School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
© Get Permissions
Restricted access

Abstract

Moist convection occurred repeatedly in the midnight-to-morning hours of 11–16 June 1998 and yielded excessive rainfall in a narrow latitudinal corridor over East Asia, causing severe flood. Numerical experiments and composite analyses of a 5-day period are performed to examine the mechanisms governing nocturnal convection. Both simulations and observations show that a train of MCSs concurrently developed along a quasi-stationary mei-yu front and coincided with the impact of a monsoon surge on a frontogenetic zone at night. This process was regulated primarily by a nocturnal low-level jet (NLLJ) in the southwesterly monsoon that formed over southern China and extended to central China. In particular, the NLLJ acted as a mechanism of moisture transport over the plains. At its northern terminus, the NLLJ led to a zonal band of elevated conditionally unstable air where strong low-level ascent overcame small convective inhibition, triggering new convection in three preferred plains. An analysis of convective instability shows that the low-tropospheric intrusion of moist monsoon air generated CAPE of ~1000 J kg−1 prior to convection initiation, whereas free-atmospheric forcing was much weaker. The NLLJ-related horizontal advection accounted for most of the instability precondition at 100–175 J kg−1 h−1. At the convective stage, instability generation by the upward transport of moisture increased to ~100 J kg−1 h−1, suggesting that ascending inflow caused feedback in convection growth. The convection dissipated in late morning with decaying NLLJ and moisture at elevated layers. It is concluded that the diurnally varying summer monsoon acted as an effective discharge of available moist energy from southern to central China, generating the morning-peak heavy rainfall corridor.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guixing Chen, chenguixing@mail.sysu.edu.cn

Abstract

Moist convection occurred repeatedly in the midnight-to-morning hours of 11–16 June 1998 and yielded excessive rainfall in a narrow latitudinal corridor over East Asia, causing severe flood. Numerical experiments and composite analyses of a 5-day period are performed to examine the mechanisms governing nocturnal convection. Both simulations and observations show that a train of MCSs concurrently developed along a quasi-stationary mei-yu front and coincided with the impact of a monsoon surge on a frontogenetic zone at night. This process was regulated primarily by a nocturnal low-level jet (NLLJ) in the southwesterly monsoon that formed over southern China and extended to central China. In particular, the NLLJ acted as a mechanism of moisture transport over the plains. At its northern terminus, the NLLJ led to a zonal band of elevated conditionally unstable air where strong low-level ascent overcame small convective inhibition, triggering new convection in three preferred plains. An analysis of convective instability shows that the low-tropospheric intrusion of moist monsoon air generated CAPE of ~1000 J kg−1 prior to convection initiation, whereas free-atmospheric forcing was much weaker. The NLLJ-related horizontal advection accounted for most of the instability precondition at 100–175 J kg−1 h−1. At the convective stage, instability generation by the upward transport of moisture increased to ~100 J kg−1 h−1, suggesting that ascending inflow caused feedback in convection growth. The convection dissipated in late morning with decaying NLLJ and moisture at elevated layers. It is concluded that the diurnally varying summer monsoon acted as an effective discharge of available moist energy from southern to central China, generating the morning-peak heavy rainfall corridor.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guixing Chen, chenguixing@mail.sysu.edu.cn
Save