• Baur, D., M. Saisana, and N. Schulze, 2004: Modelling the effects of meteorological variables on ozone concentration—A quantile regression approach. Atmos. Environ., 38, 46894699, doi:10.1016/j.atmosenv.2004.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001a: Random forests. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Breiman, L., 2001b: Statistical modelling: The two cultures. Stat. Sci., 16, 199231, doi:10.1214/ss/1009213726.

  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

  • Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Knaff, R. Knabb, C. Lauer, C. R. Sampson, and R. T. DeMaria, 2009: A new method for estimating tropical cyclone wind speed probabilities. Wea. Forecasting, 24, 15731591, doi:10.1175/2009WAF2222286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Coauthors, 2013: Improvements to the operational tropical cyclone wind speed probability model. Wea. Forecasting, 28, 586602, doi:10.1175/WAF-D-12-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and R. Hart, 2008: Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Wea. Rev., 136, 20472065, doi:10.1175/2007MWR2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friederichs, P., and A. Hense, 2007: Statistical downscaling of extreme precipitation events using censored quantile regression. Mon. Wea. Rev., 135, 23652378, doi:10.1175/MWR3403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelsthorpe, R. V., E. Schied, and J. J. W. Wilson, 2000: ASCAT— Metop’s advanced scatterometer. Eur. Space Agency Bull., 102, 1927.

    • Search Google Scholar
    • Export Citation
  • Georgiou, P. N., 1985: Design wind speeds in tropical cyclone-prone regions. Ph.D. thesis, Department of Civil Engineering, University of Western Ontario, London, Ontario, Canada.

  • Hoffman, R. N., and S. M. Leidner, 2005: An introduction to the near-real-time QuikCSAT data. Wea. Forecasting, 20, 476493, doi:10.1175/WAF841.1.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692483, doi:10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, doi:10.1175/JAS-D-13-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khare, S. P., A. Bonazzi, N. West, E. Bellone, and S. Jewson, 2009: On the modelling of over-ocean hurricane surface winds and their uncertainty. Quart. J. Roy. Meteor. Soc., 135, 13501365, doi:10.1002/qj.442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309325, doi:10.2151/jmsj.2011-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., and F. Fujibe, 2009: Relationship between surface wind fields and three-dimensional structures of tropical cyclones landfalling in the main islands of Japan. J. Meteor. Soc. Japan, 87, 959977, doi:10.2151/jmsj.87.959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2016: Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database. Geophys. Res. Lett., 43, 10 48010 488, doi:10.1002/2016GL071066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, doi:10.1175/2011JAMC2673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical cyclone flight level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, doi:10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenker, R., and K. F. Hallock, 2001: Quantile regression. J. Econ. Perspect., 15, 143156, doi:10.1257/jep.15.4.143.

  • Kursa, M. B., and W. R. Rudnicki, 2010: Feature selection with the Boruta package. J. Stat. Software, 36, 113, doi:10.18637/jss.v036.i11.

  • Landsea, C. W., and Coauthors, 2004: A reanalysis of Hurricane Andrew’s intensity. Bull. Amer. Meteor. Soc., 85, 16991712, doi:10.1175/BAMS-85-11-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., E. Scherer, M. Dixon, E. Bellone, and S. Khare, 2014: Cyclone wind field asymmetries during extratropical transition in the western North Pacific. J. Appl. Meteor. Climatol., 53, 421428, doi:10.1175/JAMC-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., S. Khare, E. Scherer, M. Dixon, and E. Bellone, 2015: Parametric modeling of transitioning cyclone wind fields for risk assessment studies in the western North Pacific. J. Appl. Meteor. Climatol., 54, 624642, doi:10.1175/JAMC-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacAfee, A. W., and G. M. Pearson, 2006: Development and testing of tropical cyclone parametric wind models tailored for midlatitude application—Preliminary results. J. Appl. Meteor. Climatol., 45, 12441260, doi:10.1175/JAM2407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. D., and W. M. Gray, 1993: Tropical cyclone observation and forecasting with and without aircraft reconnaissance. Wea. Forecasting, 8, 519532, doi:10.1175/1520-0434(1993)008<0519:TCOAFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, N., 2006: Quantile regression forests. J. Mach. Learn. Res., 7, 983999.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868883, doi:10.1175/2008WAF2007087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, M., P. Mitra, and R. S. Nanjundiah, 2016: Autoencoder-based identification of predictors of Indian monsoon. Meteor. Atmos. Phys., 128, 613628, doi:10.1007/s00703-016-0431-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C., J. Hansen, P. Wittmann, J. Knaff, and A. Schumacher, 2016: Wave probabilities consistent with official tropical cyclone forecasts. Wea. Forecasting, 31, 20352045, doi:10.1175/WAF-D-15-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stiles, B. W., R. E. Danielson, W. L. Poulsen, and A. G. Fore, 2014: Optimized tropical cyclone winds from QuikSCAT: A neural network approach. IEEE Trans. Geosci. Remote Sens., 52, 74187434, doi:10.1109/TGRS.2014.2312333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., and M. Kunii, 2009: Some aspects of azimuthal wavenumber-one structure of typhoons represented in the JMA operational mesoscale analyses. J. Meteor. Soc. Japan, 87, 615633, doi:10.2151/jmsj.87.615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., and K. Bessho, 2011: A statistical analysis of near-core surface wind asymmetries in typhoons obtained from QuikSCAT data. J. Meteor. Soc. Japan, 89, 225241, doi:10.2151/jmsj.2011-304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 12901311, doi:10.1175/MWR-D-13-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., F. J. Masters, M. D. Powell, and D. Wadhera, 2009: Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn., 97, 392405, doi:10.1016/j.jweia.2009.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, doi:10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and J. C. Chan, 2013a: The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part I: Tropical cyclone recurvature. J. Appl. Meteor. Climatol., 52, 13941416, doi:10.1175/JAMC-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and J. C. Chan, 2013b: The analysis of tropical cyclone tracks in the western North Pacific through data mining. Part II: Tropical cyclone landfall. J. Appl. Meteor. Climatol., 52, 14171432, doi:10.1175/JAMC-D-12-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 486 65
PDF Downloads 480 480 59

A Machine Learning Approach to Modeling Tropical Cyclone Wind Field Uncertainty

View More View Less
  • 1 Risk Frontiers, Macquarie University, Sydney, Australia
  • 2 Presciient, Sydney, Australia
© Get Permissions
Restricted access

Abstract

Tropical cyclone (TC) risk assessment models and probabilistic forecasting systems rely on large ensembles to simulate the track trajectories, intensities, and spatial distributions of damaging winds from severe events. Given computational constraints associated with the generation of such ensembles, the representation of TC winds is typically based on very simple parametric formulations. Such models strongly underestimate the full range of TC wind field variability and thus do not allow for accurate representation of the risk profile. With this in mind, this study explores the potential of machine learning algorithms as an alternative to current parametric methods. First, a catalog of high-resolution TC wind simulations is assembled for the western North Pacific using the Weather Research and Forecasting (WRF) Model. The simulated wind fields are then decomposed via principal component analysis (PCA) and a quantile regression forest model is trained to predict the conditional distributions of the first three principal component (PC) weights. With this model, predictions can be made for any quantiles in the distributions of the PC weights thereby providing a way to account for uncertainty in the modeled wind fields. By repeatedly sampling the quantile values, probabilistic maps for the likelihood of attaining given wind speed thresholds can be easily generated. Similarly the inclusion of such a model as part of a TC risk assessment framework can greatly increase the range of wind field patterns sampled, providing a broader view of the threat posed by TC winds.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Loridan, thomas.loridan@gmail.com

Abstract

Tropical cyclone (TC) risk assessment models and probabilistic forecasting systems rely on large ensembles to simulate the track trajectories, intensities, and spatial distributions of damaging winds from severe events. Given computational constraints associated with the generation of such ensembles, the representation of TC winds is typically based on very simple parametric formulations. Such models strongly underestimate the full range of TC wind field variability and thus do not allow for accurate representation of the risk profile. With this in mind, this study explores the potential of machine learning algorithms as an alternative to current parametric methods. First, a catalog of high-resolution TC wind simulations is assembled for the western North Pacific using the Weather Research and Forecasting (WRF) Model. The simulated wind fields are then decomposed via principal component analysis (PCA) and a quantile regression forest model is trained to predict the conditional distributions of the first three principal component (PC) weights. With this model, predictions can be made for any quantiles in the distributions of the PC weights thereby providing a way to account for uncertainty in the modeled wind fields. By repeatedly sampling the quantile values, probabilistic maps for the likelihood of attaining given wind speed thresholds can be easily generated. Similarly the inclusion of such a model as part of a TC risk assessment framework can greatly increase the range of wind field patterns sampled, providing a broader view of the threat posed by TC winds.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Loridan, thomas.loridan@gmail.com
Save