Observations of Misovortices within a Long-Lake-Axis-Parallel Lake-Effect Snowband during the OWLeS Project

Jake P. Mulholland Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jake P. Mulholland in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Frame Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jeffrey Frame in
Current site
Google Scholar
PubMed
Close
,
Stephen W. Nesbitt Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
,
Scott M. Steiger Department of Atmospheric and Geological Sciences, State University of New York, Oswego, New York

Search for other papers by Scott M. Steiger in
Current site
Google Scholar
PubMed
Close
,
Karen A. Kosiba Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Karen A. Kosiba in
Current site
Google Scholar
PubMed
Close
, and
Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent lake-effect snow field projects in the eastern Great Lakes region have revealed the presence of misovortices with diameters between 40 and 4000 m along cyclonic horizontal shear zones within long-lake-axis-parallel bands. One particular band in which an abundance of misovortices developed occurred on 7 January 2014. The leading hypothesis for lake-effect misovortexgenesis is the release of horizontal shearing instability (HSI). An analysis of three-dimensional dual-Doppler wind syntheses reveals that two criteria for HSI are satisfied along the horizontal shear zone, strongly suggesting that HSI was the likely cause of the misovortices in this case. Furthermore, the general lack of anticyclonic–cyclonic vortex couplets throughout the event reveal that tilting of horizontal vorticity into the vertical is of less importance compared to the release of HSI and subsequent strengthening via vortex stretching. A WRF simulation depicts misovortices along the horizontal shear zone within the simulated band. The simulated vortices display remarkable similarities to the observed vortices in terms of intensity, depth, spacing, and size. The simulated vortices persist over the eastern end of the lake; however, once the vortices move inland, they quickly dissipate. HSI criteria are also calculated from the WRF simulation and are satisfied along the shear zone. Competing hypotheses of misovortexgenesis are presented, with results indicating that the release of HSI is the likely mechanism of vortex formation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jake P. Mulholland, jmulhol2@illinois.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Abstract

Recent lake-effect snow field projects in the eastern Great Lakes region have revealed the presence of misovortices with diameters between 40 and 4000 m along cyclonic horizontal shear zones within long-lake-axis-parallel bands. One particular band in which an abundance of misovortices developed occurred on 7 January 2014. The leading hypothesis for lake-effect misovortexgenesis is the release of horizontal shearing instability (HSI). An analysis of three-dimensional dual-Doppler wind syntheses reveals that two criteria for HSI are satisfied along the horizontal shear zone, strongly suggesting that HSI was the likely cause of the misovortices in this case. Furthermore, the general lack of anticyclonic–cyclonic vortex couplets throughout the event reveal that tilting of horizontal vorticity into the vertical is of less importance compared to the release of HSI and subsequent strengthening via vortex stretching. A WRF simulation depicts misovortices along the horizontal shear zone within the simulated band. The simulated vortices display remarkable similarities to the observed vortices in terms of intensity, depth, spacing, and size. The simulated vortices persist over the eastern end of the lake; however, once the vortices move inland, they quickly dissipate. HSI criteria are also calculated from the WRF simulation and are satisfied along the shear zone. Competing hypotheses of misovortexgenesis are presented, with results indicating that the release of HSI is the likely mechanism of vortex formation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jake P. Mulholland, jmulhol2@illinois.edu

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

Save
  • Arnott, N., Y. Richardson, J. Wurman, and E. N. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311335, doi:10.1175/MWR3065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W. C. Lee, C. A. Wolff, and H. Cai, 2013: A Solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, doi:10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buban, M. S., and C. L. Ziegler, 2016: The formation of small-scale atmospheric vortices via baroclinic horizontal shearing instability. J. Atmos. Sci., 73, 20852104, doi:10.1175/JAS-D-14-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. R. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analysis of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505, doi:10.1175/MWR3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snow bands in western and central New York. Mon. Wea. Rev., 119, 23232332, doi:10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, P. C., B. Geerts, and P. T. Bergmaier, 2014: A dryline in southeast Wyoming. Part I: Multiscale analysis using observations and modeling on 22 June 2010. Mon. Wea. Rev., 142, 268289, doi:10.1175/MWR-D-13-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1982a: A new look at the vorticity equation with application to tornadogenesis. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 249252.

  • Davies-Jones, R. P., 1982b: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 175–189.

    • Crossref
    • Export Citation
  • Dessens, J., 1972: Influence of ground roughness on tornadoes: A laboratory simulation. J. Appl. Meteor., 11, 7275, doi:10.1175/1520-0450(1972)011<0072:IOGROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and J. C. Hubbert, 2012: The separation of noise and signal components in Doppler RADAR returns. Preprints, Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Météo-France, SP-078. [Available online at https://www.eol.ucar.edu/projects/dynamo/spol/references/Separation_Noise_Signal.Dixon.ext_abs2012.pdf.]

  • Fabry, F., 2015: Radar Meteorology: Principles and Practice. Cambridge University Press, 256 pp.

    • Crossref
    • Export Citation
  • Fjørtoft, R., 1950: Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ., 17 (6), 152.

    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., and J. H. Merritt, 1984: Mesoscale vortices over the Great Lakes in wintertime. Mon. Wea. Rev., 112, 377381, doi:10.1175/1520-0493(1984)112<0377:MVOTGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, doi:10.1002/qj.49704920602.

  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys.-Math. Soc. Japan, Ser. 3, 13, 106110.

  • Grim, J. A., N. F. Laird, and D. A. R. Kristovich, 2004: Mesoscale vortices embedded within a lake-effect shoreline band. Mon. Wea. Rev., 132, 22692274, doi:10.1175/1520-0493(2004)132<2269:MVEWAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, H. Y., and Coauthors, 2011: Finescale Doppler radar observation of a tornado and low-level misocyclones within a winter storm in the Japan Sea coastal region. Mon. Wea. Rev., 139, 351369, doi:10.1175/2010MWR3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juckes, M., 1995: Instability of surface and upper-tropospheric shear lines. J. Atmos. Sci., 52, 32473262, doi:10.1175/1520-0469(1995)052<3247:IOSAUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karan, H., and K. Knupp, 2006: Mobile Integrated Profiler System (MIPS) observations of low-level convergent boundaries during IHOP. Mon. Wea. Rev., 134, 92112, doi:10.1175/MWR3058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawashima, M., and Y. Fujiyoshi, 2005: Shear instability wave along a snowband: Instability structure, evolution, and energetics derived from dual-Doppler radar data. J. Atmos. Sci., 62, 351370, doi:10.1175/JAS-3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, doi:10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2000: The Lake-Induced Convection Experiment (Lake-ICE) and the Snowband Dynamics Project. Bull. Amer. Meteor. Soc., 81, 519542, doi:10.1175/1520-0477(2000)081<0519:TLCEAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-effect Systems (OWLeS) field project: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, doi:10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., L. J. Miller, and D. A. R. Kristovich, 2001: Synthetic dual-Doppler analysis of a winter mesoscale vortex. Mon. Wea. Rev., 129, 312331, doi:10.1175/1520-0493(2001)129<0312:SDDAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, doi:10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, F. W., 1977: Surface roughness effects on suction vortex formation: A laboratory simulation. J. Atmos. Sci., 34, 10221027, doi:10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analysis of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, doi:10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768, doi:10.1175/MWR3367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. V. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, doi:10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 18791898, doi:10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, doi:10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451163, doi:10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, D. W., 1972: Modification of surface air over Lake Ontario in winter. Mon. Wea. Rev., 100, 662670, doi:10.1175/1520-0493(1972)100<0662:MOSAOL>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1880: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., XI, 5770.

  • Reinking, R. F., and Coauthors, 1993: The Lake Ontario Winter Storms (LOWS) project. Bull. Amer. Meteor. Soc., 74, 18281849, doi:10.1175/1520-0477-74-10-1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodi, A., 2011: King of the air: The evolution and capabilities of Wyoming’s observations aircraft. Meteorological Technology International, May 2011, UKIP, Dorking, United Kingdom, 44–47.

  • Rodriguez, Y., D. A. R. Kristovich, and M. R. Hjelmfelt, 2007: Lake-to-lake cloud bands: Frequencies and locations. Mon. Wea. Rev., 135, 42024213, doi:10.1175/2007MWR1960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, doi:10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle land surface model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, doi:10.1175/MWR-D-15-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and G. E. Mann, 2000: Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. Mon. Wea. Rev., 128, 728745, doi:10.1175/1520-0493(2000)128<0728:LAMDPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., and R. J. Ballentine, 2008: Structure and characteristics of long lake-axis-parallel lake-effect storms. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 13B.6. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142021.htm.]

  • Steiger, S. M., and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on Wheels. Mon. Wea. Rev., 141, 28212840, doi:10.1175/MWR-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241, doi:10.1175/2008MWR2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J., D. Wolfe, R. Zamora, B. Stankov, and T. Christian, 1992: Observations of a Colorado tornado. Part I: Mesoscale environment and tornadogenesis. Mon. Wea. Rev., 120, 497521, doi:10.1175/1520-0493(1992)120<0497:OOACTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Frankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, doi:10.1175/1520-0493(1992)120,1785:TROBLC.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12428 10982 131
PDF Downloads 681 167 10