• Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, doi:10.1175/2008MWR2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., R. B. Smith, and D. A. Wesley, 2013: Theory, observations, and predictions of orographic precipitation. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. D. Wekker, and B. J. Snyder, Eds., Springer Atmospheric Sciences, Springer, 291–344, doi:10.1007/978-94-007-4098-3_6.

    • Crossref
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5, 432441, doi:10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalk, P. G., and J. R. Dunn, 2005: The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Anal. Biochem., 343, 5465, doi:10.1016/j.ab.2005.04.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, doi:10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C. N., and R. A. Houze Jr., 2005: Modification of precipitation by coastal orography in storms crossing northern California. Mon. Wea. Rev., 133, 31103131, doi:10.1175/MWR3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. Hughes, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in northern California. Mon. Wea. Rev., 141, 20152036, doi:10.1175/MWR-D-12-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. O. G. Persson, S. Haimov, and M. D. Shupe, 2016: Mountain waves and orographic precipitation in a northern Colorado winter storm. Quart. J. Roy. Meteor. Soc., 142, 836853, doi:10.1002/qj.2685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. V. Haar, and W. R. Cotton, 2001: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. J. Atmos. Sci., 58, 19781994, doi:10.1175/1520-0469(2001)058<1978:SSAMVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, doi:10.1175/JAS3554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. D. Parrish, J. S. Holloway, and D. L. Bartels, 2006: A multiwinter analysis of channeled flow through a prominent gap along the northern California coast during CALJET and PACJET. Mon. Wea. Rev., 134, 18151841, doi:10.1175/MWR3148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Water Manage., 162, 8394, doi:10.1680/wama.2009.162.2.83.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., L. O. Grant, W. R. Cotton, and D. C. Rogers, 1991: The effect of decoupled low-level flow on winter orographic clouds and precipitation in the Yampa River valley. J. Appl. Meteor., 30, 368386, doi:10.1175/1520-0450(1991)030<0368:TEODLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2013: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, doi:10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, doi:10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

    • Crossref
    • Export Citation
  • Valenzuela, R. A., and D. E. Kingsmill, 2015: Orographic precipitation forcing along the coast of northern California during a landfalling winter storm. Mon. Wea. Rev., 143, 35703590, doi:10.1175/MWR-D-14-00365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, B. L., D. B. Wuertz, D. C. Welsh, and R. McPeek, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, doi:10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, R., 1991: Estimator for the standard deviation of wind direction based on moments of the Cartesian components. J. Appl. Meteor., 30, 13411353, doi:10.1175/1520-0450(1991)030<1341:EFTSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets experiment. J. Hydrometeor., 4, 264282, doi:10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Yu, C.-K., and Y.-H. Hsieh, 2009: Formation of the convective lines off the mountainous coast of southeastern Taiwan: A case study of 3 January 2004. Mon. Wea. Rev., 137, 30723091, doi:10.1175/2009MWR2867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, doi:10.1029/94GL01710.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 3
PDF Downloads 10 10 2

Terrain-Trapped Airflows and Orographic Rainfall along the Coast of Northern California. Part I: Kinematic Characterization Using a Wind Profiling Radar

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study develops an objective method of identifying terrain-trapped airflows (TTAs) along the coast of Northern California and documenting their impact on orographic rainfall. TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. A 13-winter-seasons dataset is employed, including observations from a 915-MHz wind profiling radar along the coast at Bodega Bay (BBY, 15 m MSL) and surface meteorology stations at BBY and in the coastal mountains at Cazadero (CZD, 478 m MSL). A subset of rainy hours exhibits a profile with enhanced vertical shear and an easterly wind maximum in the lowest 500 m MSL, roughly the same depth as the nearby coastal terrain. Both flow features have a connection to TTAs along the coast of Northern California. Based on the average orientation (320°–140°) and altitude of nearby topography, mean wind direction in the lowest 500 m MSL () between 0°–140° is used as the initial criterion to identify TTA conditions. Application of this threshold yields a CZD/BBY rainfall ratio of 1.4 (3.2) for TTA (NO TTA) conditions. More detailed analysis of the relationship between and orographic rainfall reveals that an upper threshold of 150° more precisely divides the TTA and NO-TTA regimes. A sensitivity analysis and comparison with a TTA documented in a previous case study show that the best TTA identification criteria correspond to with a duration of at least 2 h. This objective identification method is applied to seven case studies in Part II of the present study.

Current affiliation: Department of Geophysics, University of Chile, Santiago, Chile.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raul A. Valenzuela, raul.valenzuela@colorado.edu

Abstract

This study develops an objective method of identifying terrain-trapped airflows (TTAs) along the coast of Northern California and documenting their impact on orographic rainfall. TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. A 13-winter-seasons dataset is employed, including observations from a 915-MHz wind profiling radar along the coast at Bodega Bay (BBY, 15 m MSL) and surface meteorology stations at BBY and in the coastal mountains at Cazadero (CZD, 478 m MSL). A subset of rainy hours exhibits a profile with enhanced vertical shear and an easterly wind maximum in the lowest 500 m MSL, roughly the same depth as the nearby coastal terrain. Both flow features have a connection to TTAs along the coast of Northern California. Based on the average orientation (320°–140°) and altitude of nearby topography, mean wind direction in the lowest 500 m MSL () between 0°–140° is used as the initial criterion to identify TTA conditions. Application of this threshold yields a CZD/BBY rainfall ratio of 1.4 (3.2) for TTA (NO TTA) conditions. More detailed analysis of the relationship between and orographic rainfall reveals that an upper threshold of 150° more precisely divides the TTA and NO-TTA regimes. A sensitivity analysis and comparison with a TTA documented in a previous case study show that the best TTA identification criteria correspond to with a duration of at least 2 h. This objective identification method is applied to seven case studies in Part II of the present study.

Current affiliation: Department of Geophysics, University of Chile, Santiago, Chile.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raul A. Valenzuela, raul.valenzuela@colorado.edu
Save