• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, doi:10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631643, doi:10.1175/2007MWR2033.1.

  • Bellamy, J. C., 1949: Objective calculations of divergence, vertical velocity, and vorticity. Bull. Amer. Meteor. Soc., 30, 4549.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1990: Mesoscale convective patterns of the High Plains. Bull. Amer. Meteor. Soc., 71, 9941005, doi:10.1175/1520-0477(1990)071<0994:MCPOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, doi:10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6GM85DZ.

    • Crossref
    • Export Citation
  • Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part II: Organization and instability mechanisms. Mon. Wea. Rev., 118, 11231144, doi:10.1175/1520-0493(1990)118<1123:TAFSIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043, doi:10.1175/MWR-D-11-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Corfidi, and D. M. Schultz, 2008: Elevated convection and castellanus: Ambiguities, significance, and questions. Wea. Forecasting, 23, 12801330, doi:10.1175/2008WAF2222118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma–Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 14781486, doi:10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow-Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, doi:10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytic model of the nocturnal low-level jet over Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., 1969: Convective processes resolved by a mesoscale rawinsonde network. J. Appl. Meteor., 8, 778798, doi:10.1175/1520-0450(1969)008<0778:CPRBAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortune, M. A., W. R. Cotton, and R. L. McAnelly, 1992: Frontal-wave-like evolution in some mesoscale convective complexes. Mon. Wea. Rev., 120, 12791300, doi:10.1175/1520-0493(1992)120<1279:FWLEIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, doi:10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to warm season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi: 10.1175/BAMS-D-15-00257.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., and D. Turner, 2015: FP6 Hesston, KS radiosonde data, version 1.0, UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6765CD0.

    • Crossref
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, doi:10.3402/tellusa.v19i2.9766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, doi:10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., D. Turner, E. Smith, and J. Gebaurer, 2016: Mobile PISA 1 OU/NSSL CLAMPS radiosonde data, version 1. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6416VDH.

    • Crossref
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197203, doi:10.1175/1520-0450(1970)009<0197:ASTTCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, doi:10.1175/MWR-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, doi:10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, doi:10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, doi:10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble filter analyses. Wea. Forecasting, 30, 11581181, doi:10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, doi:10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121, 103132, doi:10.1175/1520-0493(1993)121<0103:MAOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., R. H. Johnson, and B. F. Smull, 1991: The wake low in a midlatitude mesoscale convective system having complex convective organization. Mon. Wea. Rev., 119, 134158, doi:10.1175/1520-0493(1991)119<0134:TWUIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, doi:10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and C. A. Davis, 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 20512075, doi:10.1175/MWR3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, and K. W. Manning, 2014a: Use of the parcel buoyancy minimum (Bmin) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation environments. Mon. Wea. Rev., 142, 945966, doi:10.1175/MWR-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, and K. W. Manning, 2014b: Use of the parcel buoyancy minimum (Bmin) to diagnose simulated thermodynamic destabilization. Part II: Composite analysis of mature MCS environments. Mon. Wea. Rev., 142, 967990, doi:10.1175/MWR-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR—Earth Observing Laboratory, 2015: FP1 ARM Central Facility radiosonde data, version 1.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016. [Available online at https://data.eol.ucar.edu/dataset/485.021.]

  • UCAR/NCAR—Earth Observing Laboratory, 2016a: FP4 NCAR/EOL QC soundings, version 2.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D63776XH.

    • Crossref
    • Export Citation
  • UCAR/NCAR—Earth Observing Laboratory, 2016b: FP5 NCAR/EOL QC soundings, version 2.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6ZG6QF7.

    • Crossref
    • Export Citation
  • UCAR/NCAR—Earth Observing Laboratory, 2016c: MP4 NCAR/EOL QC soundings, version 2.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6707ZNV.

    • Crossref
    • Export Citation
  • Vermeesch, K., 2015: FP2 Greensburg, KS radiosonde data, version 1.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6FQ9TPH.

    • Crossref
    • Export Citation
  • Wagner, T., E. Olson, and W. Feltz, 2016: Mobile PISA 3 UW/SSEC SPARC radiosonde data, version 2.0. UCAR/NCAR—Earth Observing Laboratory, accessed 1 October 2016, doi:10.5065/D6VH5M7B.

    • Crossref
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., M. C. Coniglio, M. D. Parker, and R. S. Schumacher, 2016: CSU/NCSU/NSSL MGAUS radiosonde data, version 3.0. NCAR/Earth Observatory Laboratory, accessed 1 October 2016, doi:10.5065/D6W66HXN.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 10
PDF Downloads 74 74 12

Mesoscale Vertical Motions near Nocturnal Convection Initiation in PECAN

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Radiosonde measurements from the Plains Elevated Convection At Night (PECAN) 2015 field campaign are used to diagnose mesoscale vertical motions near nocturnal convection initiation (CI). These CI events occur in distinctly different environments including ones with 1) strong forcing for ascent associated with a synoptic cold front and midtropospheric short wave, 2) nocturnal low-level jets interacting with weaker quasi-stationary fronts, or 3) the absence of a surface front or boundary altogether. Radiosonde-derived vertical motion profiles in each of these CI environments are characterized by low- to midtropospheric ascent. The representativeness of these vertical motion profiles is supported by distributions of corresponding mesoscale averages from model-produced 0–6-h ensemble forecasts. Thermodynamic data from radiosondes are then analyzed along with selected model ensemble members to elucidate the role of the vertical motions on subsequent CI. In a case with strong forcing for mesoscale ascent, vertical motions facilitated CI by reducing convection inhibition (CIN). However, in the majority of cases, weaker but persistent vertical motions contributed to the development of elevated, approximately saturated layers with lapse rates greater than moist adiabatic. Such layers have negligible CIN and, thereby, the capacity to support CI even without strong finescale triggering mechanisms in the environment. This aspect may distinguish much central U.S. nocturnal CI from typical daytime CI. The elevated unstable layers occur in disparate large-scale environments, but a common aspect of their development is mesoscale ascent in the presence of warm advection, which results in upward transports of moisture (contributing to local increases of moist static energy) with adiabatic cooling above.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

Radiosonde measurements from the Plains Elevated Convection At Night (PECAN) 2015 field campaign are used to diagnose mesoscale vertical motions near nocturnal convection initiation (CI). These CI events occur in distinctly different environments including ones with 1) strong forcing for ascent associated with a synoptic cold front and midtropospheric short wave, 2) nocturnal low-level jets interacting with weaker quasi-stationary fronts, or 3) the absence of a surface front or boundary altogether. Radiosonde-derived vertical motion profiles in each of these CI environments are characterized by low- to midtropospheric ascent. The representativeness of these vertical motion profiles is supported by distributions of corresponding mesoscale averages from model-produced 0–6-h ensemble forecasts. Thermodynamic data from radiosondes are then analyzed along with selected model ensemble members to elucidate the role of the vertical motions on subsequent CI. In a case with strong forcing for mesoscale ascent, vertical motions facilitated CI by reducing convection inhibition (CIN). However, in the majority of cases, weaker but persistent vertical motions contributed to the development of elevated, approximately saturated layers with lapse rates greater than moist adiabatic. Such layers have negligible CIN and, thereby, the capacity to support CI even without strong finescale triggering mechanisms in the environment. This aspect may distinguish much central U.S. nocturnal CI from typical daytime CI. The elevated unstable layers occur in disparate large-scale environments, but a common aspect of their development is mesoscale ascent in the presence of warm advection, which results in upward transports of moisture (contributing to local increases of moist static energy) with adiabatic cooling above.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save