Water Budget and Intensity Change of Tropical Cyclones over the Western North Pacific

Si Gao Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Si Gao in
Current site
Google Scholar
PubMed
Close
,
Shunan Zhai Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Shunan Zhai in
Current site
Google Scholar
PubMed
Close
,
Baiqing Chen Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Baiqing Chen in
Current site
Google Scholar
PubMed
Close
, and
Tim Li Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three satellite observational datasets and a reanalysis dataset during the period 2001–09 are used to examine four water budget components (total precipitable water, surface evaporation, precipitation, and column-integrated moisture flux convergence) associated with western North Pacific tropical cyclones (TCs) of different intensity change categories: rapidly intensifying, slowly intensifying, neutral, and weakening. The results show that surface evaporation plays an important role in storm rapid intensification (RI) and the highest evaporation associated with rapidly intensifying TCs is associated with the highest sea surface temperature. Total precipitable water in the outer environment, where moisture is mainly provided by surface evaporation, is also vital to storm RI because RI is favored when there is less dry air intruded into the storm circulation. The roles of surface evaporation and total precipitable water in storm RI are related to the enhanced convective available potential energy by moistening and warming the boundary layer. The largest amount of column-integrated moisture flux convergence associated with weakening TCs, which results in the heaviest precipitation, is because their strongest mean intensity promotes moisture transport. It is suggested that different water budget components play different roles in TC intensity change. The results agree with the notion that TC intensity change results from a competition between surface moisture and heat fluxes and low-entropy downdrafts into the boundary layer.

Earth System Modelling Center Contribution Number 160.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Si Gao, sigao@nuist.edu.cn

Abstract

Three satellite observational datasets and a reanalysis dataset during the period 2001–09 are used to examine four water budget components (total precipitable water, surface evaporation, precipitation, and column-integrated moisture flux convergence) associated with western North Pacific tropical cyclones (TCs) of different intensity change categories: rapidly intensifying, slowly intensifying, neutral, and weakening. The results show that surface evaporation plays an important role in storm rapid intensification (RI) and the highest evaporation associated with rapidly intensifying TCs is associated with the highest sea surface temperature. Total precipitable water in the outer environment, where moisture is mainly provided by surface evaporation, is also vital to storm RI because RI is favored when there is less dry air intruded into the storm circulation. The roles of surface evaporation and total precipitable water in storm RI are related to the enhanced convective available potential energy by moistening and warming the boundary layer. The largest amount of column-integrated moisture flux convergence associated with weakening TCs, which results in the heaviest precipitation, is because their strongest mean intensity promotes moisture transport. It is suggested that different water budget components play different roles in TC intensity change. The results agree with the notion that TC intensity change results from a competition between surface moisture and heat fluxes and low-entropy downdrafts into the boundary layer.

Earth System Modelling Center Contribution Number 160.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Si Gao, sigao@nuist.edu.cn
Save
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, doi:10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G., E. Zipser, D. Jorgensen, and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, doi:10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., S. A. Grodsky, K. Katsaros, A. M. Mestas-Nuez, B. Blanke, and F. Desbiolles, 2013: Improvement in air-sea flux estimates derived from satellite observations. Int. J. Remote Sens., 34, 52435261, doi:10.1080/01431161.2013.787502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, doi:10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, doi:10.1175/WAF-D-13-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D. Y.-C., K. K. W. Cheung, and C.-S. Lee, 2011: Some implications of core regime wind structures in western North Pacific tropical cyclones. Wea. Forecasting, 26, 6175, doi:10.1175/2010WAF2222420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 6487, doi:10.1175/MWR-D-13-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos., 118, 21842196, doi:10.1002/jgrd.50250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze, 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293, doi:10.1175/2009MWR2827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, doi:10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE3.0 algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisius, T., and T. Hasselbeck, 2009: The effect of latent cooling processes in tropical cyclone simulations. Quart. J. Roy. Meteor. Soc., 135, 17321749, doi:10.1002/qj.495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., and L. S. Chiu, 2010: Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int. J. Remote Sens., 31, 46994710, doi:10.1080/01431161.2010.485149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., and L. S. Chiu, 2012: Development of statistical typhoon intensity prediction: Application to satellite-observed surface evaporation and rain rate (STIPER). Wea. Forecasting, 27, 240250, doi:10.1175/WAF-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., S. Zhai, L. S. Chiu, and D. Xia, 2016a: Satellite air–sea enthalpy flux and intensity change of tropical cyclones over the western North Pacific. J. Appl. Meteor. Climatol., 55, 425444, doi:10.1175/JAMC-D-15-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., W. Zhang, J. Liu, I.-I. Lin, L. S. Chiu, and K. Cao, 2016b: Improvement in typhoon intensity change classification by incorporating an ocean coupling potential intensity index into decision trees. Wea. Forecasting, 31, 95106, doi:10.1175/WAF-D-15-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., B. Chen, T. Li, N. Wu, and W. Deng, 2017a: AIRS-observed warm core structures of tropical cyclones over the western North Pacific. Dyn. Atmos. Oceans, 77, 100106, doi:10.1016/j.dynatmoce.2016.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., S. Zhai, T. Li, and Z. Chen, 2017b: On the asymmetric distribution of shear-relative typhoon rainfall. Meteor. Atmos. Phys., doi:10.1007/s00703-016-0499-0, in press.

    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, doi:10.1175/JAS-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, doi:10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, doi:10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, doi:10.1175/JCLI-D-12-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008: On the differences in storm rainfall from Hurricanes Isidore and Lili. Part II: Water budget. Wea. Forecasting, 23, 4461, doi:10.1175/2007WAF2005120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, doi:10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, doi:10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. L. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118, 21852198, doi:10.1175/1520-0493(1990)118<2185:PEOHGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 31443163, doi:10.1175/JAS-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity—A revisit. J. Atmos. Sci., 72, 13231345, doi:10.1175/JAS-D-14-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Lien, 2014: “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, doi:10.1002/2014GL061281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, doi:10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 36443660, doi:10.1175/MWR3041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917, doi:10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., B. Chapron, and J. Tournadre, 2010: Satellite microwave surface observations in tropical cyclones. Mon. Wea. Rev., 138, 421437, doi:10.1175/2009MWR3040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and J. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., and L. Wu, 2009: Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36, L09809, doi:10.1029/2009GL037634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., J. Ming, and P. Chi, 2012: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Wea. Forecasting, 27, 411423, doi:10.1175/WAF-D-11-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, doi:10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation/convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, doi:10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., H. Jiang, and J. Zawislak, 2017: The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Mon. Wea. Rev., 145, 795809, doi:10.1175/MWR-D-16-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, A., and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J. Oceanogr., 63, 427477, doi:10.1007/s10872-007-0039-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036, doi:10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 34343453, doi:10.1175/MWR-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, and K. A. Hilburn, 2015: Remote Sensing Systems TRMM TMI daily environmental suite on 0.25 deg grid, version 7.1, columnar atmospheric water vapor. Remote Sensing Systems, Santa Rosa, CA, accessed 10 November 2016. [Available online at www.remss.com/missions/tmi.]

  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, doi:10.1175/MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, M. T., and D. J. Cecil, 2010: Effects of vertical wind shear on tropical cyclone precipitation. Mon. Wea. Rev., 138, 645662, doi:10.1175/2009MWR2921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Wu, L., and Coauthors, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, doi:10.1029/2012GL053546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., Y. Wang, and W. Zhong, 2015: A statistical analysis of moisture characteristics during the rapid intensification of tropical cyclones over the northwestern Pacific (in Chinese with English abstract). Climatic Environ. Res., 20, 433442.

    • Search Google Scholar
    • Export Citation
  • Yu, J., Z. Tan, and Y. Wang, 2010: Effects of vertical wind shear on intensity and rainfall asymmetries of strong Tropical Storm Bilis (2006). Adv. Atmos. Sci., 27, 552561, doi:10.1007/s00376-009-9030-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2013: Investigation of PR and TMI version 6 and version 7 rainfall algorithms in landfalling tropical cyclones relative to the NEXRAD stage-IV multisensor precipitation estimate dataset. J. Appl. Meteor. Climatol., 52, 28092827, doi:10.1175/JAMC-D-12-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Q. Liu, and L. Wu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, doi:10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., S. Gao, B. Chen, and K. Cao, 2013: The application of decision tree to intensity change classification of tropical cyclones in western North Pacific. Geophys. Res. Lett., 40, 18831887, doi:10.1002/grl.50280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuge, X.-Y., J. Ming, and Y. Wang, 2015: Reassessing the use of inner-core hot towers to predict tropical cyclone rapid intensification. Wea. Forecasting, 30, 12651279, doi:10.1175/WAF-D-15-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2907 2072 92
PDF Downloads 548 59 7