Feasibility Study of the Reconstruction of Historical Weather with Data Assimilation

Kinya Toride Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Search for other papers by Kinya Toride in
Current site
Google Scholar
PubMed
Close
,
Panduka Neluwala Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Search for other papers by Panduka Neluwala in
Current site
Google Scholar
PubMed
Close
,
Hyungjun Kim Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Hyungjun Kim in
Current site
Google Scholar
PubMed
Close
, and
Kei Yoshimura Institute of Industrial Science, and Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Kei Yoshimura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a large amount of documented weather information all over the world, including Asia (e.g., old diaries, log books, etc.). The ultimate goal of this study is to reconstruct historical weather by deriving total cloud cover (TCC) from historically documented weather records and to assimilate them using a general circulation model and a data assimilation scheme. Two experiments are performed using the Global Spectral Model and an ensemble Kalman filter: 1) a reanalysis data experiment and 2) a ground observation data experiment, for 18 synthesized observation stations in Japan according to the Historical Weather Data Base. By assuming that weather records can be converted into three TCC categories, the synthetic observation data of daily TCC are created from reanalysis data, with a large observation error of 30%, and by classifying ground observation data into the three categories. Compared with the simulation without assimilation of any observation, the results of the reanalysis data experiment show improvements, not only in TCC but also in other meteorological variables (e.g., humidity, precipitation, precipitable water, wind, and pressure). For specific humidity at 2 m above the surface, the monthly averaged root-mean-square error is reduced by 18%–22% downstream of the assimilated region. The results of the ground observation data experiment are not as successful as a result of additional error sources, indicating the bias needs to be handled correctly. By showing improvements with the loosely classified cloud information, the feasibility of the developed model to be applied for historical weather reconstruction is confirmed.

Current affiliation: Department of Civil and Environmental Engineering, University of California, Davis, Davis, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kei Yoshimura, kei@iis.u-tokyo.ac.jp

Abstract

There is a large amount of documented weather information all over the world, including Asia (e.g., old diaries, log books, etc.). The ultimate goal of this study is to reconstruct historical weather by deriving total cloud cover (TCC) from historically documented weather records and to assimilate them using a general circulation model and a data assimilation scheme. Two experiments are performed using the Global Spectral Model and an ensemble Kalman filter: 1) a reanalysis data experiment and 2) a ground observation data experiment, for 18 synthesized observation stations in Japan according to the Historical Weather Data Base. By assuming that weather records can be converted into three TCC categories, the synthetic observation data of daily TCC are created from reanalysis data, with a large observation error of 30%, and by classifying ground observation data into the three categories. Compared with the simulation without assimilation of any observation, the results of the reanalysis data experiment show improvements, not only in TCC but also in other meteorological variables (e.g., humidity, precipitation, precipitable water, wind, and pressure). For specific humidity at 2 m above the surface, the monthly averaged root-mean-square error is reduced by 18%–22% downstream of the assimilated region. The results of the ground observation data experiment are not as successful as a result of additional error sources, indicating the bias needs to be handled correctly. By showing improvements with the loosely classified cloud information, the feasibility of the developed model to be applied for historical weather reconstruction is confirmed.

Current affiliation: Department of Civil and Environmental Engineering, University of California, Davis, Davis, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kei Yoshimura, kei@iis.u-tokyo.ac.jp
Save
  • Adamson, G. C. D., 2015: Private diaries as information sources in climate research. Wiley Interdiscip. Rev.: Climate Change, 6, 599611, doi:10.1002/wcc.365.

    • Search Google Scholar
    • Export Citation
  • Alpert, J. C., M. Kanamitsu, P. M. Calpan, J. Sela, G. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2012: Identification of climatic state with limited proxy data. Climate Past, 8, 11411151, doi:10.5194/cp-8-1141-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baron, W. R., 1982: The reconstruction of eighteenth century temperature records through the use of content analysis. Climatic Change, 4, 385398, doi:10.1007/BF02423470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, W. T., and A. E. J. Ogilvie, 1978: Weather compilations as a source of data for the reconstruction of European climate during the medieval period. Climatic Change, 1, 331348, doi:10.1007/BF00135154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhend, J., J. Franke, D. Folini, M. Wild, and S. Brönnimann, 2012: An ensemble-based approach to climate reconstructions. Climate Past, 8, 963976, doi:10.5194/cp-8-963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., and P. D. Jonest, 1993: “Little Ice Age” summer temperature variations: Their nature and relevance to recent global warming trends. Holocene, 3, 367376, doi:10.1177/095968369300300409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brázdil, R., C. Pfister, H. Wanner, H. Von Storch, and J. Luterbacher, 2005: Historical climatology In Europe—The state of the art. Climatic Change, 70, 363430, doi:10.1007/s10584-005-5924-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772, doi:10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 3, 85 pp.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dee, S. G., N. J. Steiger, J. Emile-Geay, and G. J. Hakim, 2016: On the utility of proxy system models for estimating climate states over the common era. J. Adv. Model. Earth Syst., 8, 11641179, doi:10.1002/2016MS000677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobrovolný, P., and Coauthors, 2010: Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, 101, 69107, doi:10.1007/s10584-009-9724-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, Q.-S., J.-Y. Zheng, Z.-X. Hao, P.-Y. Zhang, and W.-C. Wang, 2005: Reconstruction of historical climate in China: High-resolution precipitation data from Qing Dynasty archives. Bull. Amer. Meteor. Soc., 86, 671679, doi:10.1175/BAMS-86-5-671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimmi, U., J. Luterbacher, C. Pfister, and H. Wanner, 2007: A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: The example of the precipitation series for Bern, Switzerland (1760–2003). Theor. Appl. Climatol., 87, 185199, doi:10.1007/s00704-005-0193-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilderson, T. P., R. G. Fairbanks, and J. L. Rubenstone, 1994: Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science, 263, 663665, doi:10.1126/science.263.5147.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2006: Ensemble-based atmospheric data assimilation. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 124–156.

    • Crossref
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, doi:10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntley, H. S., and G. J. Hakim, 2010: Assimilation of time-averaged observations in a quasi-geostrophic atmospheric jet model. Climate Dyn., 35, 9951009, doi:10.1007/s00382-009-0714-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and M. E. Mann, 2004: Climate over past millennia. Rev. Geophys., 42, RG2002, doi:10.1029/2003RG000143.

  • Jones, P. D., T. J. Osborn, and K. R. Briffa, 2001: The evolution of climate over the last millennium. Science, 292, 662667, doi:10.1126/science.1059126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037, doi:10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maejima, I., 1966: Some remarks on the climatic conditions of Kyoto during the period from 1474 to 1533 A. D. Geogr. Rep. Tokyo Metrop. Univ., 1, 103–111.

  • Manley, G., 1974: Central England temperatures: Monthly means 1659 to 1973. Quart. J. Roy. Meteor. Soc., 100, 389405, doi:10.1002/qj.49710042511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787, doi:10.1038/33859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA, 105, 13 25213 257, doi:10.1073/pnas.0805721105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., and Coauthors, 2013: Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP. Climate Past, 9, 887901, doi:10.5194/cp-9-887-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikami, T., 1996: Long term variations of summer temperatures in Tokyo since 1721. Geogr. Rep. Tokyo Metrop. Univ., 31, 157–165.

  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 15191535, doi:10.1175/2010MWR3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 38413861, doi:10.1175/2007MWR1873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, W. Karlén, and S.-E. Lauritzen, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613617, doi:10.1038/nature03265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890895, doi:10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.3402/tellusa.v56i5.14462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PAGES 2k Consortium, 2013: Continental-scale temperature variability during the past two millennia. Nat. Geosci., 6, 339346, doi:10.1038/ngeo1797.

    • Search Google Scholar
    • Export Citation
  • Pfister, C., and Coauthors, 1999: Documentary evidence on climate in sixteenth-century Europe. Climatic Change, 43, 55110, doi:10.1023/A:1005540707792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renssen, H., A. Mairesse, H. Goosse, P. Mathiot, O. Heiri, D. M. Roche, K. H. Nisancioglu, and P. J. Valdes, 2015: Multiple causes of the Younger Dryas cold period. Nat. Geosci., 8, 946949, doi:10.1038/ngeo2557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddall, M., E. J. Rohling, A. Almogi-Labin, C. Hemleben, D. Meischner, I. Schmelzer, and D. A. Smeed, 2003: Sea-level fluctuations during the last glacial cycle. Nature, 423, 853858, doi:10.1038/nature01690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Climate, 27, 426441, doi:10.1175/JCLI-D-12-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Workshop on Convection in Large-Scale Models, Reading, United Kingdom, ECMWF, 297–316. [Available online at http://www.ecmwf.int/en/elibrary/12733-sensitivity-time-mean-large-scale-flow-cumulus-convection-ecmwf-model.]

  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, doi:10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., 2015: Stable water isotopes in climatology, meteorology, and hydrology: A review. J. Meteor. Soc. Japan, 93, 513533.

  • Yoshimura, K., and M. Kanamitsu, 2013: Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Wea. Rev., 141, 30873101, doi:10.1175/MWR-D-12-00271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., T. Miyoshi, and M. Kanamitsu, 2014: Observation system simulation experiments using water vapor isotope information. J. Geophys. Res., 119, 78427862, doi:10.1002/2014JD021662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, M., 2007: An introduction to historical weather database in Japan (in Japanese). Tenki, 54, 191194.

  • Zhang, X.-Z. Z., Q.-S. S. Ge, X.-Q. Q. Fang, J.-Y. Y. Zheng, and J. Fei, 2013: Precipitation variations in Beijing during 1860-1897 AD revealed by daily weather records from the Weng Tong-He diary. Int. J. Climatol., 33, 568576, doi:10.1002/joc.3448.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1639 957 38
PDF Downloads 501 67 3