Evolution and Vertical Structure of an Undular Bore Observed on 20 June 2015 during PECAN

Dana Mueller Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Dana Mueller in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
Min Deng Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Min Deng in
Current site
Google Scholar
PubMed
Close
, and
Coltin Grasmick Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study documents the evolution of an impressive, largely undular bore triggered by an MCS-generated density current on 20 June 2015, observed as part of the Plains Elevated Convection at Night (PECAN) experiment. The University of Wyoming King Air with profiling nadir- and zenith-viewing lidars sampled the south-bound bore from the time the first bore wave emerged from the nocturnal convective cold pool and where updrafts over 10 m s−1 and turbulence in the wave’s wake were encountered, through the early dissipative stage in which the leading wave began to lose amplitude and speed. Through most of the bore’s life cycle, its second wave had a higher or equal amplitude relative to the leading wave. Striking roll clouds formed in wave crests and wave energy was detected to about 5 km AGL. The upstream environment indicates a negative Scorer parameter region due to flow reversal at midlevels, providing a wave trapping mechanism. The observed bore strength of 2.4–2.9 and speed of 15–16 m s−1 agree well with values predicted from hydraulic theory. Surface and profiling measurements collected later in the bore’s life cycle, just after sunrise, indicate a transition to a soliton.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

This study documents the evolution of an impressive, largely undular bore triggered by an MCS-generated density current on 20 June 2015, observed as part of the Plains Elevated Convection at Night (PECAN) experiment. The University of Wyoming King Air with profiling nadir- and zenith-viewing lidars sampled the south-bound bore from the time the first bore wave emerged from the nocturnal convective cold pool and where updrafts over 10 m s−1 and turbulence in the wave’s wake were encountered, through the early dissipative stage in which the leading wave began to lose amplitude and speed. Through most of the bore’s life cycle, its second wave had a higher or equal amplitude relative to the leading wave. Striking roll clouds formed in wave crests and wave energy was detected to about 5 km AGL. The upstream environment indicates a negative Scorer parameter region due to flow reversal at midlevels, providing a wave trapping mechanism. The observed bore strength of 2.4–2.9 and speed of 15–16 m s−1 agree well with values predicted from hydraulic theory. Surface and profiling measurements collected later in the bore’s life cycle, just after sunrise, indicate a transition to a soliton.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Baines, P. G., 2016: Internal hydraulic jumps in two-layer systems. J. Fluid Mech., 787, 115, doi:10.1017/jfm.2015.662.

  • Bergmaier, P. T., B. Geerts, Z. Wang, B. Liu, and P. C. Campbell, 2014: A dryline in southeast Wyoming. Part II: Airborne in situ and Raman lidar observations. Mon. Wea. Rev., 142, 29612977, doi:10.1175/MWR-D-13-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borden, Z., and E. Meiburg, 2013: Circulation-based models for Boussinesq internal bores. J. Fluid Mech., 726, doi:10.1017/jfm.2013.239.

  • Christie, D. R., 1983: Solitary waves as aviation hazard. Eos, Trans. Amer. Geophys. Union, 64, 67–67, doi:10.1029/EO064i007p00067-01.

  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1978: On solitary waves in the atmosphere. J. Atmos. Sci., 35, 805825, doi:10.1175/1520-0469(1978)035<0805:OSWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1979: Intrusive density flows in the lower troposphere: A source of atmospheric solitons. J. Geophys. Res., 84, 49594970, doi:10.1029/JC084iC08p04959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., K. J. Muirhead, and R. H. Clarke, 1981: Solitary waves in the lower atmosphere. Nature, 293, 4649, doi:10.1038/293046a0.

  • Clarke, J. C., 1998: An atmospheric undular bore along the Texas Coast. Mon. Wea. Rev., 126, 10981100, doi:10.1175/1520-0493(1998)126<1098:AAUBAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., 1972: The Morning Glory: An atmospheric hydraulic jump. J. Appl. Meteor., 11, 304311, doi:10.1175/1520-0450(1972)011<0304:TMGAAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., R. K. Smith, and D. G. Reid, 1981: The Morning Glory of the Gulf of Carpentaria: An atmospheric undular bore. Mon. Wea. Rev., 109, 17261750, doi:10.1175/1520-0493(1981)109<1726:TMGOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T., and K. Knupp, 2011: Radiometer and profiler analysis of the effects of a bore and a solitary wave on the stability of the nocturnal boundary layer. Mon. Wea. Rev., 139, 211223, doi:10.1175/2010MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T., K. Knupp, and D. Herzmann, 2009: The spectacular undular bore in Iowa on 2 October 2007. Mon. Wea. Rev., 137, 495503, doi:10.1175/2008MWR2518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T., K. Knupp, and D. Herzmann, 2010: An undular bore and gravity waves illustrated by dramatic time-lapse photography. J. Atmos. Oceanic Technol., 27, 13551361, doi:10.1175/2010JTECHA1472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, doi:10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. J. Miller, 1985: A numerical and analytical study of atmospheric undular bores. Quart. J. Roy. Meteor. Soc., 111, 225242, doi:10.1002/qj.49711146710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and R. Ge, 1984: An atmospheric solitary gust observed with a Doppler radar, a tall tower and a surface network. J. Atmos. Sci., 41, 25592573, doi:10.1175/1520-0469(1984)041<2559:AASGOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, doi:10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R., D. S. Zrnić, and R. J. Doviak, 1990: Initiation of a solitary wave family in the demise of a nocturnal thunderstorm density current. J. Atmos. Sci., 47, 319337, doi:10.1175/1520-0469(1990)047<0319:IOASWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, doi:10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goler, R. A., 2009: Eastward-propagating undular bores over Cape York Peninsula. Mon. Wea. Rev., 137, 26322645, doi:10.1175/2009MWR2833.1.

  • Goler, R. A., and M. J. Reeder, 2004: The generation of the Morning Glory. J. Atmos. Sci., 61, 13601376, doi:10.1175/1520-0469(2004)061<1360:TGOTMG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1989: The numerical simulation of atmospheric gravity currents. Part II. Environments with stable layers. Geophys. Astrophys. Fluid Dyn., 46, 3551, doi:10.1080/03091928908208903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., and M. Sitkowski, 2010: An atmospheric undular bore along the eastern Florida coast. Weather, 65, 148150, doi:10.1002/wea.538.

  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, doi:10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29853002, doi:10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, doi:10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, doi:10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, doi:10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., S. H. Melfi, W. C. Skillman, D. Whiteman, P. B. Dorian, and R. Ferrare, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, doi:10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. Pagowski, J. W. Wilson, F. Fabry, C. Flamant, W. Feltz, G. Schwemmer, and B. Geerts, 2005: The structure and dynamics of atmospheric bores and solitons as determined from remote sensing and modeling experiments during IHOP. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., JP6J.4. [Available online at https://ams.confex.com/ams/pdfpapers/97033.pdf.]

  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008a: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon. Wea. Rev., 136, 13731400, doi:10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamat, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008b: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, doi:10.1175/2007JTECHA951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, doi:10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, 2014: Compact airborne Raman lidar for profiling aerosol, water vapor and clouds. Opt. Express, 22, 20 61320 621, doi:10.1364/OE.22.020613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2000: Simulated density currents in idealized stratified environments. Mon. Wea. Rev., 128, 14201437, doi:10.1175/1520-0493(2000)128<1420:SDCIIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002: A new look at the Super Outbreak of tornadoes on 3–4 April 1974. Mon. Wea. Rev., 130, 16331651, doi:10.1175/1520-0493(2002)130<1633:ANLATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahapatra, P. R., R. J. Doviak, and D. S. Zrnić, 1991: Multisensor observation of an atmospheric undular bore. Bull. Amer. Meteor. Soc., 72, 14681480, doi:10.1175/1520-0477(1991)072<1468:MOOAAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and R. H. Johnson, 2008: An observational and modeling study of an atmospheric internal bore during NAME 2004. Mon. Wea. Rev., 136, 41504167, doi:10.1175/2008MWR2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 18791898, doi:10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, doi:10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and F. Einadui, 1993: Solitary waves in the atmosphere. J. Atmos. Sci., 50, 21162136, doi:10.1175/1520-0469(1993)050<2116:SWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents: In the Environment and the Laboratory. 2nd ed. Cambridge University Press, 244 pp.

  • Smith, R. K., 1988: Travelling waves and bores in the lower atmosphere: The “morning glory” and related phenomena. Earth Sci. Rev., 25, 267290, doi:10.1016/0012-8252(88)90069-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, L., S. Serafin, S. Haimov, and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Roy. Meteor. Soc., 141, 32073225, doi:10.1002/qj.2604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and L. Li, 2014: Turbulent hydraulic jumps in a stratified shear flow. Part 2. J. Fluid Mech., 758, 94120, doi:10.1017/jfm.2014.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, doi:10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and D. E. Kingsmill, 1995: Structure of an atmospheric undular bore generated from colliding boundaries during CaPE. Mon. Wea. Rev., 123, 13741393, doi:10.1175/1520-0493(1995)123<1374:SOAAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Markhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 584, doi:10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2012: A general description of a gravity current front propagating in a two-layer stratified fluid. J. Fluid Mech., 711, 545575, doi:10.1017/jfm.2012.409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2016: Airborne compact rotational Raman lidar for temperature measurement. Opt. Express, 24, A1210A1223, doi:10.1364/OE.24.0A1210.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7861 6802 73
PDF Downloads 385 83 10