Diurnal Preconditioning of Subtropical Coastal Convective Storm Environments

Joshua S. Soderholm Climate Research Group, University of Queensland, St. Lucia, Queensland, Australia

Search for other papers by Joshua S. Soderholm in
Current site
Google Scholar
PubMed
Close
,
Hamish A. McGowan Climate Research Group, University of Queensland, St. Lucia, Queensland, Australia

Search for other papers by Hamish A. McGowan in
Current site
Google Scholar
PubMed
Close
,
Harald Richter Research and Development Branch, Australian Bureau of Meteorology, Docklands, Victoria, Australia

Search for other papers by Harald Richter in
Current site
Google Scholar
PubMed
Close
,
Kevin Walsh School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Kevin Walsh in
Current site
Google Scholar
PubMed
Close
,
Tony Wedd Queensland Regional Office, Australian Bureau of Meteorology, Brisbane, Queensland, Australia

Search for other papers by Tony Wedd in
Current site
Google Scholar
PubMed
Close
, and
Tammy M. Weckwerth Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tammy M. Weckwerth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Boundary layer evolution in response to diurnal forcing is manifested at the mesobeta and smaller scales of the atmosphere. Because this variability resides on subsynoptic scales, the potential influence upon convective storm environments is often not captured in coarse observational and modeling datasets, particularly for complex physical settings such as coastal regions. A detailed observational analysis of diurnally forced preconditioning for convective storm environments of South East Queensland, Australia (SEQ), during the Coastal Convective Interactions Experiment (2013–15) is presented. The observations used include surface-based measurements, aerological soundings, and dual-polarization Doppler radar. The sea-breeze circulation was found to be the dominant influence; however, profile modification by the coastward advection of the continental boundary layer was found to be an essential mechanism for favorable preconditioning of deep convection. This includes 1) enhanced moisture in the city of Brisbane, potentiality due to an urban heat island–enhanced land–sea thermal contrast, 2) significant afternoon warming and moistening above the sea breeze resulting from the advection of the inland convective boundary layer coastward under prevailing westerly flow coupled with the sea-breeze return flow, and 3) substantial variations in near-surface moisture likely associated with topography and land use. For the 27 November 2014 Brisbane hailstorm, which caused damages exceeding $1.5 billion Australian dollars (AUD), the three introduced diurnal preconditioning processes are shown to favor a mesoscale convective environment supportive of large hailstone growth. The hybrid high-precipitation supercell storm mode noted for this event and previous similar events in SEQ is hypothesized to be more sensitive to variations in near-surface and boundary layer instability in contrast to contemporary supercell storms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua S. Soderholm, j.soderholm@uq.edu.au

Abstract

Boundary layer evolution in response to diurnal forcing is manifested at the mesobeta and smaller scales of the atmosphere. Because this variability resides on subsynoptic scales, the potential influence upon convective storm environments is often not captured in coarse observational and modeling datasets, particularly for complex physical settings such as coastal regions. A detailed observational analysis of diurnally forced preconditioning for convective storm environments of South East Queensland, Australia (SEQ), during the Coastal Convective Interactions Experiment (2013–15) is presented. The observations used include surface-based measurements, aerological soundings, and dual-polarization Doppler radar. The sea-breeze circulation was found to be the dominant influence; however, profile modification by the coastward advection of the continental boundary layer was found to be an essential mechanism for favorable preconditioning of deep convection. This includes 1) enhanced moisture in the city of Brisbane, potentiality due to an urban heat island–enhanced land–sea thermal contrast, 2) significant afternoon warming and moistening above the sea breeze resulting from the advection of the inland convective boundary layer coastward under prevailing westerly flow coupled with the sea-breeze return flow, and 3) substantial variations in near-surface moisture likely associated with topography and land use. For the 27 November 2014 Brisbane hailstorm, which caused damages exceeding $1.5 billion Australian dollars (AUD), the three introduced diurnal preconditioning processes are shown to favor a mesoscale convective environment supportive of large hailstone growth. The hybrid high-precipitation supercell storm mode noted for this event and previous similar events in SEQ is hypothesized to be more sensitive to variations in near-surface and boundary layer instability in contrast to contemporary supercell storms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua S. Soderholm, j.soderholm@uq.edu.au
Save
  • Abbs, D., 1986: Sea-breeze interactions along a concave coastline in southern Australia: Observations and numerical modeling study. Mon. Wea. Rev., 114, 831848, doi:10.1175/1520-0493(1986)114<0831:SBIAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N., and R. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 21122130, doi:10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N., R. Wakimoto, and T. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N., M. Weisman, and L. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927, doi:10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Australian Bureau of Meteorology, 2015: Basic climatological station meta data. BoM, 18 pp. [Available online at http://www.bom.gov.au/clim_data/cdio/metadata/pdf/siteinfo/IDCJMD0040.040211.SiteInfo.pdf.]

  • Azorin-Molina, C., S. Tijm, and D. Chen, 2011: Development of selection algorithms and databases for sea breeze studies. Theor. Appl. Climatol., 106, 531546, doi:10.1007/s00704-011-0454-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., S. M. Vicente-Serrano, D. Chen, B. H. Connell, M. Á. Domínguez-Durán, J. Revuelto, and J. I. López-Moreno, 2015: AVHRR warm-season cloud climatologies under various synoptic regimes across the Iberian Peninsula and the Balearic Islands. Int. J. Climatol., 35, 19842002, doi:10.1002/joc.4102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldi, M., V. Ciardini, J. D. Dalu, T. De Filippis, G. Maracchi, and G. Dalu, 2014: Hail occurrence in Italy: Towards a national database and climatology. Atmos. Res., 138, 268277, doi:10.1016/j.atmosres.2013.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., 1995: Sea breezes shallow and deep on the California coast. Mon. Wea. Rev., 123, 36143622, doi:10.1175/1520-0493(1995)123<3614:SBSADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463467, doi:10.1175/1520-0493(1987)115<0463:TGZITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., T. M. Weckwerth, A. M. Blyth, B. Geerts, Q. Miao, and Y. P. Richardson, 2010: Observations of the evolution of the nocturnal and convective boundary layers and the structure of open-celled convection on 14 June 2002. Mon. Wea. Rev., 138, 25892607, doi:10.1175/2010MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., and R. E. López, 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113, 12821299, doi:10.1175/1520-0493(1985)113<1282:SPOCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, E. P. J., K. M. de Beurs, and A. D. Hartkamp, 2001: Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinf., 3, 146154, doi:10.1016/S0303-2434(01)85006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, J., 1996: Review of severe thunderstorm forecasting and the severe thunderstorm warning service in the southeast coast district of Queensland. Fifth Australian Severe Thunderstorm Conf., Avoca Beach, NSW, Australia, Bureau of Meteorology, 178.

  • Carleton, A., J. Adegoke, J. Allard, D. Arnold, and D. Travis, 2001: Summer season land cover—Convective cloud associations for the midwest U.S. “Corn Belt.” Geophys. Res. Lett., 28, 16791682, doi:10.1029/2000GL012635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, and M. C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor. Climatol., 46, 13241340, doi:10.1175/JAM2526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiba, O., K. Fumiaki, G. Naito, and K. Sassa, 1999: Helicopter observations of the sea breeze over a coastal area. J. Appl. Meteor., 38, 481492, doi:10.1175/1520-0450(1999)038<0481:HOOTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, doi:10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and R. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 20292045, doi:10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 10831102, doi:10.1175/2010MWR3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, and N. Soulakellis, 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551, doi:10.1007/s10546-008-9306-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deangelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., K. S. Godwin, G. D. Emmitt, and S. Greco, 2012: Airborne Doppler lidar measurements of valley flows in complex coastal terrain. J. Appl. Meteor. Climatol., 51, 15581574, doi:10.1175/JAMC-D-10-05034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., and T. L. Mote, 2003: Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteor., 42, 12731284, doi:10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C., III, 1996: What is a supercell? Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., p. 641.

  • Feng, Y.-C., F. Fabry, and T. M. Weckwerth, 2016: Improving radar refractivity retrieval by considering the change in the refractivity profile and the varying altitudes of ground targets. J. Atmos. Oceanic Technol., 33, 9891004, doi:10.1175/JTECH-D-15-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkele, K., J. Hacker, H. Kraus, and R. Byron-Scott, 1995: A complete sea-breeze circulation cell derived from aircraft observations. Bound.-Layer Meteor., 73, 299317, doi:10.1007/BF00711261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, E. D., C. M. Rozoff, W. R. Cotton, and P. L. Silva Dias, 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound.-Layer Meteor., 122, 4365, doi:10.1007/s10546-006-9091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frye, J. D., and T. L. Mote, 2010: Convection initiation along soil moisture boundaries in the southern Great Plains. Mon. Wea. Rev., 138, 11401151, doi:10.1175/2009MWR2865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1986: Mesoscale classifications: Their history and their application to forecasting. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 18–31, doi:10.1007/978-1-935704-20-1.

    • Crossref
    • Export Citation
  • Gartland, L., 2011: Heat Islands: Understanding and Mitigating Heat in Urban Areas. Earthscan, 192 pp.

    • Crossref
    • Export Citation
  • Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity: Impact tests using OSSEs. J. Atmos. Oceanic Technol., 30, 22812302, doi:10.1175/JTECH-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, and S. Partridge, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 42, 2942, doi:10.1007/s00704-002-0724-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, A. J. Fultz, and S. M. Eagan, 2015a: The effect of reservoirs on the climatology of warm-season thunderstorms in southeast Texas, USA. Int. J. Climatol., 36, 18081820, doi:10.1002/joc.4461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015b: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, doi:10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halbert, K. T., G. W. Blumberg, and P. T. March, 2015: SHARPpy: Fueling the Python cult. Fifth Symp. on Advances in Modeling and Analysis Using Python, Phoenix, AZ, Amer. Meteor. Soc., 402. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper270233.html.]

  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, doi:10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Insurance Council of Australia, 2015: Catastrophe database. [Available online at http://www.tiki-toki.com/timeline/entry/568110/Ten-Years-of-Catastrophe/.]

  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 71–122, doi:10.1007/978-1-935704-06-5.

    • Crossref
    • Export Citation
  • Keenan, T., J. Wilson, J. Lutz, K. Glasson, and P. May, 2007: Rationale and use of the CP2 testbed in Brisbane, Australia. 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., 12B.1. [Available online at https://ams.confex.com/ams/pdfpapers/123253.pdf.]

  • Khan, S. M., and R. W. Simpson, 2001: Effect of heat island on the meteorology of a complex urban airshed. Bound.-Layer Meteor., 100, 487506, doi:10.1023/A:1019284332306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S., and C. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, doi:10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol., 29, 22832297, doi:10.1002/joc.1865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Kimura, H. Hirakuchi, and M. Mizutori, 2000: The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteor. Soc. Japan, 78, 405420, doi:10.2151/jmsj1965.78.4_405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., S. Bastin, V. Masson, and P. Drobinski, 2006: Vertical structure of the urban boundary layer over Marseille under sea-breeze conditions. Bound.-Layer Meteor., 118, 477501, doi:10.1007/s10546-005-7772-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan island. Wea. Forecasting, 26, 4460, doi:10.1175/2010WAF2222386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, doi:10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, doi:10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melas, D., I. Ziomas, O. Klemm, and C. S. Zerefos, 1998: Anatomy of the sea-breeze circulation in Athens area under weak large-scale ambient winds. Atmos. Environ., 32, 22232237, doi:10.1016/S1352-2310(97)00420-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, and R. Przybylinski, 1990: High-precipitation supercells: A conceptual model and documentation. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 5257.

  • Mona, T., Á. Horváth, and F. Ács, 2016: A thunderstorm cell-lightning activity analysis: The new concept of air mass catchment. Atmos. Res., 169, 340344, doi:10.1016/j.atmosres.2015.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146, doi:10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muppa, S. K., V. K. Anandan, K. A. Kesarkar, S. V. B. Rao, and P. N. Reddy, 2012: Study on deep inland penetration of sea breeze over complex terrain in the tropics. Atmos. Res., 104–105, 209216, doi:10.1016/j.atmosres.2011.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muppa, S. K., A. Behrendt, F. Späth, V. Wulfmeyer, S. Metzendorf, and A. Riede, 2016: Turbulent humidity fluctuations in the convective boundary layer: Case studies using water vapour differential absorption lidar measurements. Bound.-Layer Meteor., 158, 4366, doi:10.1007/s10546-015-0078-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016: Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high-resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 15901604, doi:10.1002/qj.2771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045, doi:10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peter, J. R., M. J. Manton, R. J. Potts, P. T. May, S. M. Collis, and L. Wilson, 2015: Radar-derived statistics of convective storms in southeast Queensland. J. Appl. Meteor. Climatol., 54, 19852008, doi:10.1175/JAMC-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, B. B., 1973: Precipitation characteristics of a sheared, moderate intensity, supercell-type Colorado thunderstorm. J. Appl. Meteor., 12, 13541363, doi:10.1175/1520-0450(1973)012<1354:PCOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and X. Zeng, 1989: Influence on severe storm development of irrigated land. Natl. Wea. Dig., 14 (2), 1617.

  • Pinto, O., I. R. C. A. Pinto, and M. A. S. Ferro, 2013: A study of the long-term variability of thunderstorm days in southeast Brazil. J. Geophys. Res. Atmos., 118, 52315246, doi:10.1002/jgrd.50282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. J. Keith, 2007: Occurrence of Kelvin–Helmholtz billows in sea-breeze circulations. Bound.-Layer Meteor., 122, 115, doi:10.1007/s10546-006-9089-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queensland Statistician Government’s Office, 2015: Population growth highlights and trends, Queensland regions: 2015 edition. 29 pp. [Available online at http://www.qgso.qld.gov.au/products/reports/pop-growth-highlights-trends-reg-qld/pop-growth-highlights-trends-reg-qld-2015.pdf.]

  • Richter, H., J. Peter, and S. Collis, 2014: Analysis of a destructive wind storm on 16 November 2008 in Brisbane, Australia. Mon. Wea. Rev., 142, 30383060, doi:10.1175/MWR-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716738, doi:10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J. A. Smith, E. Bou-Zeid, and M. L. Baeck, 2016: The influence of land-surface heterogeneities on heavy convective rainfall in the Baltimore–Washington metropolitan area. Mon. Wea. Rev., 144, 553573, doi:10.1175/MWR-D-15-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamouris, M., 2015: Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ., 512–513, 582598, doi:10.1016/j.scitotenv.2015.01.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schatz, J., and C. J. Kucharik, 2014: Seasonality of the urban heat island effect in Madison, Wisconsin. J. Appl. Meteor. Climatol., 53, 23712386, doi:10.1175/JAMC-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shem, W., and M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189, doi:10.1016/j.atmosres.2008.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. Wilson, P. I. Joe, D. W. Burgess, R. M. Webb, and N. I. Fox, 2004: The 3 November tornadic event during Sydney 2000: Storm evolution and the role of low-level boundaries. Wea. Forecasting, 19, 2242, doi:10.1175/1520-0434(2004)019<0022:TNTEDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. R. Brook, I. Levy, P. A. Makar, J. Zhang, and P. A. Taylor, 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 79557973, doi:10.5194/acp-11-7955-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., D. Mansfield, and J. Milford, 1977: Inland penetration of sea‐breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 4776, doi:10.1002/qj.49710343504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. B., J. G. LaDue, and D. R. MacGorman, 2000: The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks. Mon. Wea. Rev., 128, 33203328, doi:10.1175/1520-0493(2000)128<3320:TRBCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., H. A. McGowan, H. Richter, K. Walsh, T. M. Weckwerth, and M. Coleman, 2016: The Coastal Convective Interactions Experiment (CCIE): Understanding the role of sea breezes for hailstorm hotspots in eastern Australia. Bull. Amer. Meteor. Soc., 97, 16871698, doi:10.1175/BAMS-D-14-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., H. A. McGowan, H. Richter, K. Walsh, T. M. Weckwerth, and M. Coleman, 2017: Long-term trends and drivers of hailstorm variability in southeast Queensland, Australia. Quart. J. Roy. Meteor. Soc., 143, 11231135, doi:10.1002/qj.2995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, J. T., 1989: New Zealand hailstorms. N. Z. J. Geol. Geophys., 32, 279291, doi:10.1080/00288306.1989.10427589.

  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, doi:10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tait, A., and R. Woods, 2007: Spatial interpolation of daily potential evapotranspiration for New Zealand using a spline model. J. Hydrometeor., 8, 430438, doi:10.1175/JHM572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsunematsu, N., and K. Kai, 2004: Time variation of cloud distribution near surface wind convergence zone in the Nobi Plain during daytime on summer sunny days. J. Meteor. Soc. Japan, 82, 15051520, doi:10.2151/jmsj.82.1505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations, 2010: Human settlements on the coast. UN Atlas Ocean. [Available online http://www.oceansatlas.org/subtopic/en/c/114/.]

  • Wakimoto, R., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, doi:10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936, doi:10.1175/2008MWR2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T., J. Wilson, and R. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Quart. J. Roy. Meteor. Soc., 137, 3141, doi:10.1002/qj.747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, doi:10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. Reum, 1988: The flare echo: Reflectivity and velocity signature. J. Atmos. Oceanic Technol., 5, 197205, doi:10.1175/1520-0426(1988)005<0197:TFERAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. Weckwerth, J. Vivekanandan, R. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, doi:10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099, doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766, doi:10.1175/2009MWR3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5500 5065 153
PDF Downloads 390 102 6