The U.S. National Blend of Models for Statistical Postprocessing of Probability of Precipitation and Deterministic Precipitation Amount

Thomas M. Hamill NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
,
Eric Engle NOAA/NWS/Meteorological Development Laboratory, Silver Spring, Maryland

Search for other papers by Eric Engle in
Current site
Google Scholar
PubMed
Close
,
David Myrick NOAA/NWS/Meteorological Development Laboratory, Silver Spring, Maryland

Search for other papers by David Myrick in
Current site
Google Scholar
PubMed
Close
,
Matthew Peroutka NOAA/NWS/Meteorological Development Laboratory, Silver Spring, Maryland

Search for other papers by Matthew Peroutka in
Current site
Google Scholar
PubMed
Close
,
Christina Finan NCEP/Climate Prediction Center, College Park, and Innovim LLC, Greenbelt, Maryland

Search for other papers by Christina Finan in
Current site
Google Scholar
PubMed
Close
, and
Michael Scheuerer Cooperative Institute for Research in the Environmental Sciences and University of Colorado Boulder, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The U.S. National Blend of Models provides statistically postprocessed, high-resolution multimodel ensemble guidance, providing National Weather Service forecasters with a calibrated, downscaled starting point for producing digital forecasts.

Forecasts of 12-hourly probability of precipitation (POP12) over the contiguous United States are produced as follows: 1) Populate the forecast and analyze cumulative distribution functions (CDFs) to be used later in quantile mapping. Were every grid point processed without benefit of data from other points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in the forecast. Accordingly, “supplemental” locations were identified for each grid point, and data from the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile mapping. 2) Load the real-time U.S. and Environment Canada (now known as Environment and Climate Change Canada) global deterministic and ensemble forecasts, interpolated to ⅛°. 3) Using CDFs from the past 60 days of data, apply a deterministic quantile mapping to the ensemble forecasts. 4) Dress the resulting ensemble with random noise. 5) Generate probabilities from the ensemble relative frequency. 6) Spatially smooth the forecast using a Savitzky–Golay smoother, applying more smoothing in flatter areas.

Forecasts of 6-hourly quantitative precipitation (QPF06) are more simply produced as follows: 1) Form a grand ensemble mean, again interpolated to ⅛°. 2) Quantile map the mean forecast using CDFs of the ensemble mean and analyzed distributions. 3) Spatially smooth the field, similar to POP12.

Results for spring 2016 are provided, demonstrating that the postprocessing improves POP12 reliability and skill, as well as the deterministic forecast bias, while maintaining sharpness and spatial detail.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0331.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Thomas M. Hamill, tom.hamill@noaa.gov

Abstract

The U.S. National Blend of Models provides statistically postprocessed, high-resolution multimodel ensemble guidance, providing National Weather Service forecasters with a calibrated, downscaled starting point for producing digital forecasts.

Forecasts of 12-hourly probability of precipitation (POP12) over the contiguous United States are produced as follows: 1) Populate the forecast and analyze cumulative distribution functions (CDFs) to be used later in quantile mapping. Were every grid point processed without benefit of data from other points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in the forecast. Accordingly, “supplemental” locations were identified for each grid point, and data from the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile mapping. 2) Load the real-time U.S. and Environment Canada (now known as Environment and Climate Change Canada) global deterministic and ensemble forecasts, interpolated to ⅛°. 3) Using CDFs from the past 60 days of data, apply a deterministic quantile mapping to the ensemble forecasts. 4) Dress the resulting ensemble with random noise. 5) Generate probabilities from the ensemble relative frequency. 6) Spatially smooth the forecast using a Savitzky–Golay smoother, applying more smoothing in flatter areas.

Forecasts of 6-hourly quantitative precipitation (QPF06) are more simply produced as follows: 1) Form a grand ensemble mean, again interpolated to ⅛°. 2) Quantile map the mean forecast using CDFs of the ensemble mean and analyzed distributions. 3) Spatially smooth the field, similar to POP12.

Results for spring 2016 are provided, demonstrating that the postprocessing improves POP12 reliability and skill, as well as the deterministic forecast bias, while maintaining sharpness and spatial detail.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0331.s1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Thomas M. Hamill, tom.hamill@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 9.66 MB)
Save
  • Accadia, C., S. Mariani, M. Casaioli, and A. Lavagnin, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and D. Nemoda, 2016: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting. Environmetrics, 27, 280292, doi:10.1002/env.2391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentzien, S., and P. Friederichs, 2012: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea. Forecasting, 27, 9881002, doi:10.1175/WAF-D-11-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, doi:10.1175/2008MWR2682.1.

  • Charba, J. P., and F. G. Samplatsky, 2011a: Regionalization in fine-grid GFS MOS 6-h quantitative precipitation forecasts. Mon. Wea. Rev., 139, 2438, doi:10.1175/2010MWR2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J. P., and F. G. Samplatsky, 2011b: High-resolution GFS-based MOS quantitative precipitation forecasts on a 4-km grid. Mon. Wea. Rev., 139, 3968, doi:10.1175/2010MWR3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coté, J., J.-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998b: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 13971418, doi:10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., J. Wiedenfeld, J. Gagan, P. Browning, A. Just, and C. Grief, 2013: The NWS Central Region extended forecast process. Preprints, 38th NWA Annual Meeting, Charleston, SC, National Weather Association, P2.38.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, doi:10.1175/WAF843.1.

  • Fortin, V., A.-C. Favre, and M. Saïd, 2006: Probabilistic forecasting from ensemble prediction systems: Improving upon the best-member method by using a different weight and dressing kernel for each member. Quart. J. Roy. Meteor. Soc., 132, 13491369, doi:10.1256/qj.05.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, N., X. Deng, P. L. Houtekamer, S. Beauregard, A. Erfani, M. Charron, R. Lahlo, and J. Marcoux, 2014: Improvements to the Global Ensemble Prediction System (GEPS) from version 3.1.0 to version 4.0.0. Environment Canada Tech. Note, 49 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_geps-400_20141118_e.pdf.]

  • Gagnon, N., and Coauthors, 2015: Improvements to the Global Ensemble Prediction System from version 4.0.1 to version 4.1.1. Environment Canada Tech. Note, 29 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_geps-411_20151215_e.pdf.]

  • Glahn, H. R., and D. P. Ruth, 2003: The New Digital Forecast Database of the National Weather Service. Bull. Amer. Meteor. Soc., 84, 195201, doi:10.1175/BAMS-84-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243268, doi:10.1111/j.1467-9868.2007.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the conterminous United States. Mon. Wea. Rev., 140, 22322252, doi:10.1175/MWR-D-11-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, doi:10.1256/qj.06.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, doi:10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, doi:10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641, doi:10.1175/2009JHM1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a stochastic perturbation scheme on global ensemble forecast. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 1.1. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm.]

  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of Stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., B. He, and H. L. Mitchell, 2014: Parallel implementation of an ensemble Kalman filter. Mon. Wea. Rev., 142, 11631182, doi:10.1175/MWR-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and E. Grimit, 2011: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Wea. Rev., 139, 26302649, doi:10.1175/2010MWR3511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4D EnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, doi:10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S. and S. Baran, S., 2017: Similarity-based semilocal estimation of post-processing models. J. Roy. Stat. Soc., 66C, 2951, doi:10.1111/rssc.12153.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and Z. Xie, 2014: BMA probabilistic quantitative precipitation forecasting over the Huaihe basin using TIGGE multimodel ensemble forecasts. Mon. Wea. Rev., 142, 15421555, doi:10.1175/MWR-D-13-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438459, doi:10.1175/2007WAF2006117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messner, J. W., G. J. Mayr, A. Zeileis, and D. S. Wilks, 2014: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Mon. Wea. Rev., 142, 448456, doi:10.1175/MWR-D-13-00271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B., K. Mahoney, E. Sukovich, R. Cifelli, and T. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, doi:10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, T. Auligné, and R. N. Hoffman, 2014: Application of feature calibration and alignment to high-resolution analysis: Examples using observations sensitive to cloud and water vapor. Mon. Wea. Rev., 142, 686702, doi:10.1175/MWR-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992 : Numerical Recipes in Fortran. 2nd ed. Cambridge University Press, 963 pp.

  • Ravela, S., K. Emanuel, and D. McLaughlin, 2007: Data assimilation by field alignment. Physica D, 230, 127145, doi:10.1016/j.physd.2006.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874888, doi:10.1175/MWR-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M., and L. A. Smith, 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 1630, doi:10.3402/tellusa.v55i1.12082.

  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 10861096, doi:10.1002/qj.2183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, doi:10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation forecasts. Mon. Wea. Rev., 138, 41994211, doi:10.1175/2010MWR3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, doi:10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verkade, J. S., J. D. Brown, P. Reggiani, and A. H. Weerts, 2013: Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 7391, doi:10.1016/j.jhydrol.2013.07.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vislocky, R. L., and J. M. Fritsch, 1997: Performance of an advanced MOS system in the 1996–97 National Collegiate Weather Forecasting Contest. Bull. Amer. Meteor. Soc., 78, 28512857, doi:10.1175/1520-0477(1997)078<2851:POAAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627, doi:10.1175/2010WAF2222367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Comparison of ensemble–MOS methods in the Lorenz ’96 setting. Meteor. Appl., 13, 246256, doi:10.1017/S1350482706002192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, doi:10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7028 4396 146
PDF Downloads 2919 451 40