A Postprocessing Method for Seasonal Forecasts Using Temporally and Spatially Smoothed Statistics

V. V. Kharin Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by V. V. Kharin in
Current site
Google Scholar
PubMed
Close
,
W. J. Merryfield Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by W. J. Merryfield in
Current site
Google Scholar
PubMed
Close
,
G. J. Boer Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by G. J. Boer in
Current site
Google Scholar
PubMed
Close
, and
W.-S. Lee Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by W.-S. Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A statistical postprocessing method for seasonal forecasts based on temporally and spatially smoothed climate statistics is introduced. The method uses information available from seasonal hindcasts initialized at the beginning of 12 calendar months. The performance of the method is tested within both deterministic and probabilistic frameworks using output from the ensemble of seasonal hindcasts produced by the Canadian Seasonal to Interannual Prediction System for the 30-yr period 1981–2010. Forecast skill improvements are found to be greater when forecast adjustment parameters estimated for individual seasons and at individual grid points are temporally and spatially smoothed. The greatest skill improvements are typically achieved for seasonally invariant parameters while skill improvements due to additional spatial smoothing are modest.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. V. Kharin, slava.kharin@canada.ca

Abstract

A statistical postprocessing method for seasonal forecasts based on temporally and spatially smoothed climate statistics is introduced. The method uses information available from seasonal hindcasts initialized at the beginning of 12 calendar months. The performance of the method is tested within both deterministic and probabilistic frameworks using output from the ensemble of seasonal hindcasts produced by the Canadian Seasonal to Interannual Prediction System for the 30-yr period 1981–2010. Forecast skill improvements are found to be greater when forecast adjustment parameters estimated for individual seasons and at individual grid points are temporally and spatially smoothed. The greatest skill improvements are typically achieved for seasonally invariant parameters while skill improvements due to additional spatial smoothing are modest.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. V. Kharin, slava.kharin@canada.ca
Save
  • Adler, R., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baehr, J., and Coauthors, 2015: The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Climate Dyn., 44, 2723–2735, doi:10.1007/s00382-014-2399-7.

    • Crossref
    • Export Citation
  • Barnston, A. G., and H. M. Van den Dool, 1993: A degeneracy in cross-validated skill in regression-based forecasts. J. Climate, 6, 963977, doi:10.1175/1520-0442(1993)006<0963:ADICVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., H. Van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, doi:10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., V. Kharin, and W. Merryfield, 2013: Decadal predictability and forecast skill. Climate Dyn., 41, 18171833, doi:10.1007/s00382-013-1705-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probabilities. Mon. Wea. Rev., 78, 13, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., J. Nattala, and M. K. Tippett, 2014: Skill improvement from increased ensemble size and model diversity. Geophys. Res. Lett., 41, 73317342, doi:10.1002/2014GL060133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. I. Hibler, 1992: Modelling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651, doi:10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley and Sons, 372 pp.

  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2003: Improved seasonal probability forecasts. J. Climate, 16, 16841701, doi:10.1175/1520-0442(2003)016<1684:ISPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, and N. Gagnon, 2001: Skill of seasonal hindcasts as a function of the ensemble size. Climate Dyn., 17, 835843, doi:10.1007/s003820100149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., Q. Teng, F. W. Zwiers, G. J. Boer, J. Derome, and J. S. Fontecilla, 2009: Skill assessment of seasonal hindcasts from the Canadian Historical Forecast Project. Atmos.–Ocean, 47, 204223, doi:10.3137/AO1101.2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, doi:10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 1991: An evaluation of procedures to estimate monthly precipitation probabilities. J. Hydrol., 122, 129140, doi:10.1016/0022-1694(91)90176-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., B. Denis, J.-S. Fontecilla, W.-S. Lee, V. V. Kharin, J. Hodgson, and B. Archambault, 2011: The Canadian Seasonal to Interannual Prediction System (CanSIPS): An overview of its design and operational implementation. CMC Tech. Rep., 51 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf.]

  • Merryfield, W. J., W.-S. Lee, W. Wang, M. Chen, and A. Kumar, 2013a: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, doi:10.1002/grl.50317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013b: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, doi:10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2014: Hydrologic prediction over the conterminous United States using the National Multi-Model Ensemble. J. Hydrometeor., 15, 14571472, doi:10.1175/JHM-D-13-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, 49 pp. [Available online at https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf.]

  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, doi:10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, L. R. L., J. Garcia-Serrano, and F. Doblas-Reyes, 2014: Seasonal forecast quality of the West African monsoon rainfall regimes by multiple forecast systems. J. Geophys. Res. Atmos., 119, 79087930, doi:10.1002/2013JD021316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Sardeshmukh, P. D., and B. I. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 25242529, doi:10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., M. Hayes, and D. Wood, 2012: Standardized Precipitation Index user guide. WMO Tech. Rep. WMO-1090, 16 pp. [Available online at http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf.]

  • Von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2002: Standardised verification system (SVS) for long-range forecasts (LRF). WMO Tech. Rep. WMO-485, 17 pp. [Available online at https://www.wmo.int/pages/prog/www/DPS/LRF/ATTACHII-8SVSfrom%20WMO_485_Vol_I.pdf.]

  • Yuan, X., and E. F. Wood, 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2322 1701 106
PDF Downloads 422 158 12