Combination of WENO and Explicit Runge–Kutta Methods for Wind Transport in the Meso-NH Model

Thibaut Lunet ISAE-Supaero and CERFACS, Toulouse, France

Search for other papers by Thibaut Lunet in
Current site
Google Scholar
PubMed
Close
,
Christine Lac Centre National de Recherches Météorologiques, Toulouse, France

Search for other papers by Christine Lac in
Current site
Google Scholar
PubMed
Close
,
Franck Auguste CERFACS, Toulouse, France

Search for other papers by Franck Auguste in
Current site
Google Scholar
PubMed
Close
,
Florian Visentin Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Florian Visentin in
Current site
Google Scholar
PubMed
Close
,
Valéry Masson Centre National de Recherches Météorologiques, Toulouse, France

Search for other papers by Valéry Masson in
Current site
Google Scholar
PubMed
Close
, and
Juan Escobar Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Juan Escobar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates the use of the weighted essentially nonoscillatory (WENO) space discretization methods of third and fifth order for momentum transport in the Meso-NH meteorological model, and their association with explicit Runge–Kutta (ERK) methods, with the specific purpose of finding an optimal combination in terms of wall-clock time to solution. A linear stability analysis using von Neumann theory is first conducted that considers six different ERK time integration methods. A new graphical representation of linear stability is proposed, which allows a first discrimination between the ERK methods. The theoretical analysis is then completed by tests on numerical problems of increasing complexity (linear advection of high wind gradient, orographic waves, density current, large eddy simulation of fog, and windstorm simulation), using a fourth-order-centered scheme as a reference basis. The five-stage third-order and fourth-order ERK combinations appear as the time integration methods of choice for coupling with WENO schemes in terms of stability. An explicit time-splitting method added to the ERK temporal scheme for WENO improves the stability properties slightly more. When the spatial discretizations are compared, WENO schemes present the main advantage of maintaining stable, nonoscillatory transitions with sharp discontinuities, but WENO third order is excessively damping, while WENO fifth order provides better accuracy. Finally, WENO fifth order combined with the ERK method makes the whole physics of the model 3 times faster compared to the classical fourth-order centered scheme associated with the leapfrog temporal scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thibaut Lunet, thibaut.lunet@isae.fr

Abstract

This paper investigates the use of the weighted essentially nonoscillatory (WENO) space discretization methods of third and fifth order for momentum transport in the Meso-NH meteorological model, and their association with explicit Runge–Kutta (ERK) methods, with the specific purpose of finding an optimal combination in terms of wall-clock time to solution. A linear stability analysis using von Neumann theory is first conducted that considers six different ERK time integration methods. A new graphical representation of linear stability is proposed, which allows a first discrimination between the ERK methods. The theoretical analysis is then completed by tests on numerical problems of increasing complexity (linear advection of high wind gradient, orographic waves, density current, large eddy simulation of fog, and windstorm simulation), using a fourth-order-centered scheme as a reference basis. The five-stage third-order and fourth-order ERK combinations appear as the time integration methods of choice for coupling with WENO schemes in terms of stability. An explicit time-splitting method added to the ERK temporal scheme for WENO improves the stability properties slightly more. When the spatial discretizations are compared, WENO schemes present the main advantage of maintaining stable, nonoscillatory transitions with sharp discontinuities, but WENO third order is excessively damping, while WENO fifth order provides better accuracy. Finally, WENO fifth order combined with the ERK method makes the whole physics of the model 3 times faster compared to the classical fourth-order centered scheme associated with the leapfrog temporal scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thibaut Lunet, thibaut.lunet@isae.fr
Save
  • Amodei, M., and J. Stein, 2009: Deterministic and fuzzy verification methods for a hierarchy of numerical models. Meteor. Appl., 16, 191203, doi:10.1002/met.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aranami, K., T. Davies, and N. Wood, 2015: A mass restoration scheme for limited-area models with semi-Lagrangian advection. Quart. J. Roy. Meteor. Soc., 141, 17951803, doi:10.1002/qj.2482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumond, P., V. Masson, C. Lac, B. Gauvreau, S. Dupont, and M. Berengier, 2013: Including the drag effects of canopies: Real case large-eddy simulation studies. Bound.-Layer Meteor., 146, 6580, doi:10.1007/s10546-012-9758-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baba, Y., and K. Takahashi, 2013: Weighted essentially non-oscillatory scheme for cloud edge problem. Quart. J. Roy. Meteor. Soc., 139, 13741388, doi:10.1002/qj.2030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., 2008: Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. J. Comput. Phys., 227, 66386659, doi:10.1016/j.jcp.2008.03.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., J. Escobar, and V. Masson, 2015: Effect of small-scale surface heterogeneities and buildings on radiation fog: Large-eddy simulation study at Paris Charles de Gaulle Airport. Quart. J. Roy. Meteor. Soc., 141, 285298, doi:10.1002/qj.2358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev., 118, 586612, doi:10.1175/1520-0493(1990)118<0586:AOTPPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, M., B. Costa, and W. S. Don, 2011: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys., 230, 17661792, doi:10.1016/j.jcp.2010.11.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A., A. Hadjadj, and A. Chinnayya, 2011: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys., 230, 17311748, doi:10.1016/j.jcp.2010.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, doi:10.1016/0021-9991(84)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crank, J., and P. Nicolson, 1947: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Cambridge Philos. Soc., 43, 5067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, J. Escobar, and P. Mascart, 2015: Large-eddy simulations of Hector the convector making the stratosphere wetter. Atmos. Sci. Lett., 16, 135140, doi:10.1002/asl2.534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., M. Cullen, A. Malcolm, M. Mawson, A. Staniforth, A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erath, C., M. A. Taylor, and R. D. Nair, 2016: Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core. Commun. Appl. Indust. Math., 7, 7498, doi:10.1515/caim-2016-0023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feistauer, M., J. Felcman, and I. Straškraba, 2003: Mathematical and Computational Methods for Compressible Flow. Oxford University Press, 552 pp.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228, doi:10.1016/0021-9991(75)90037-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J.-L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmos. Chem. Phys., 8, 46414654, doi:10.5194/acp-8-4641-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosal, S., 1996: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys., 125, 187206, doi:10.1006/jcph.1996.0088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., D. Chen, X. Li, and C. Li, 2014: Improvement of the semi-Lagrangian advection scheme in the GRAPES model: Theoretical analysis and idealized tests. Adv. Atmos. Sci., 31, 693704, doi:10.1007/s00376-013-3086-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, G.-S., and C.-W. Shu, 1995: Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202228, doi:10.1006/jcph.1996.0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnmark, I. P. E., and W. Gray, 1984: One step integration methods of third-fourth order accuracy with large hyperbolic stability limits. Math. Comput. Simul., 26, 181188, doi:10.1016/0378-4754(84)90056-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P. and T. L. Clark, 1985: Dynamics of the cloud-environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642, doi:10.1175/1520-0469(1985)042<2621:DOTCEI>2.0.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 12291239, doi:10.1175/1520-0493(2003)131<1229:NCOMTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2014: Anelastic and compressible simulation of moist deep convection. J. Atmos. Sci., 71, 37673787, doi:10.1175/JAS-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J., J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, and C. Fischer, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., M. A. Taylor, J. Overfelt, P. A. Ullrich, R. D. Nair, S. Goldhaber, and R. Kelly, 2017: CAM-SE–CSLAM: Consistent coupling of a conservative semi-Lagrangian finite-volume method with spectral element dynamics. Mon. Wea. Rev., 145, 833855, doi:10.1175/MWR-D-16-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210, doi:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and S. Crewell, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci., 38, 8041, doi:10.1029/2002RS002654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7. 2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melvin, T., M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat, 2010: An inherently mass-conserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quart. J. Roy. Meteor. Soc., 136, 799814, doi:10.1002/qj.603.

    • Search Google Scholar
    • Export Citation
  • Motamed, M., C. B. Macdonald, and S. J. Ruuth, 2011: On the linear stability of the fifth-order WENO discretization. J. Sci. Comput., 47, 127149, doi:10.1007/s10915-010-9423-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, A., J. Behrens, F. X. Giraldo, and V. Wirth, 2013: Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments. J. Comput. Phys., 235, 371393, doi:10.1016/j.jcp.2012.10.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osher, S., and R. Fedkiw, 2003: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, Vol. 153, Springer-Verlag, 273 pp.

    • Crossref
    • Export Citation
  • Pergaud, J., V. Masson, S. Malardel, and F. Couvreux, 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, doi:10.1007/s10546-009-9388-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations. Preprints, Conf. of Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217220.

  • Pressel, K. G., C. M. Kaul, T. Schneider, Z. Tan, and S. Mishra, 2015: Large-eddy simulation in an anelastic framework with closed water and entropy balances. J. Adv. Model. Earth Syst., 7, 14251456, doi:10.1002/2015MS000496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, doi:10.1002/qj.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosa, B., M. Kurowski, and M. Ziemiański, 2011: Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model. Part I: Dry benchmarks. Acta Geophys., 59, 12361266, doi:10.2478/s11600-011-0041-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480, doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shashkin, V., R. Fadeev, and M. Tolstykh, 2016: 3D conservative cascade semi-Lagrangian transport scheme using reduced latitude–longitude grid (CCS-RG). J. Comput. Phys., 305, 700721, doi:10.1016/j.jcp.2015.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 1998: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed., Lecture Notes in Mathematics, Vol 1697, Springer, 325–432, doi:10.1007/BFb0096355.

    • Crossref
    • Export Citation
  • Shu, C.-W., and S. Osher, 1988: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439471, doi:10.1016/0021-9991(88)90177-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Spiteri, R. J., and S. J. Ruuth, 2002: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal., 40, 469491, doi:10.1137/S0036142901389025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolaki, S., M. Haeffelin, C. Lac, J.-C. Dupont, T. Elias, and V. Masson, 2015: Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study. Atmos. Res., 151, 146161, doi:10.1016/j.atmosres.2014.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, doi:10.1002/fld.1650170103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Süli, E., and D. F. Mayers, 2003: An Introduction to Numerical Analysis. Cambridge University Press, 444 pp.

  • Tan, K.-A., R. Morison, and L. Leslie, 2005: A comparison of high-order explicit and non-oscillatory finite difference advection schemes for climate and weather models. Meteor. Atmos. Phys., 89, 251267, doi:10.1007/s00703-005-0132-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P., 2014: Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow-water equations. Quart. J. Roy. Meteor. Soc., 140, 14261440, doi:10.1002/qj.2226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and R. J. Spiteri, 2007: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal., 45, 18711901, doi:10.1137/050637868.

  • Xue, M., and A. J. Thorpe, 1991: A mesoscale numerical model using the nonhydrostatic pressure-based sigma-coordinate equations: Model experiments with dry mountain flows. Mon. Wea. Rev., 119, 11681185, doi:10.1175/1520-0493(1991)119<1168:AMNMUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., N. Wood, and A. Staniforth, 2002: SLICE: A semi-Lagrangian inherently conserving and efficient scheme for transport problems. Quart. J. Roy. Meteor. Soc., 128, 28012820, doi:10.1256/qj.02.69.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3720 2369 99
PDF Downloads 918 121 9