Impact of Assimilated Precipitation-Sensitive Radiances on the NU-WRF Simulation of the West African Monsoon

Sara Q. Zhang NASA Goddard Space Flight Center, Greenbelt, Maryland, and Science Applications International Corporation, McLean, Virginia

Search for other papers by Sara Q. Zhang in
Current site
Google Scholar
PubMed
Close
,
T. Matsui NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by T. Matsui in
Current site
Google Scholar
PubMed
Close
,
S. Cheung University of California, Davis, Davis, California

Search for other papers by S. Cheung in
Current site
Google Scholar
PubMed
Close
,
M. Zupanski Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by M. Zupanski in
Current site
Google Scholar
PubMed
Close
, and
C. Peters-Lidard NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by C. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work assimilates multisensor precipitation-sensitive microwave radiance observations into a storm-scale NASA Unified Weather Research and Forecasting (NU-WRF) Model simulation of the West African monsoon. The analysis consists of a full description of the atmospheric states and a realistic cloud and precipitation distribution that is consistent with the observed dynamic and physical features. The analysis shows an improved representation of monsoon precipitation and its interaction with dynamics over West Africa. Most significantly, assimilation of precipitation-affected microwave radiance has a positive impact on the distribution of precipitation intensity and also modulates the propagation of cloud precipitation systems associated with the African easterly jet. Using an ensemble-based assimilation technique that allows state-dependent forecast error covariance among dynamical and microphysical variables, this work shows that the assimilation of precipitation-sensitive microwave radiances over the West African monsoon rainband enables initialization of storms. These storms show the characteristics of continental tropical convection that enhance the connection between tropical waves and organized convection systems.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sara Q. Zhang, sara.q.zhang@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

This work assimilates multisensor precipitation-sensitive microwave radiance observations into a storm-scale NASA Unified Weather Research and Forecasting (NU-WRF) Model simulation of the West African monsoon. The analysis consists of a full description of the atmospheric states and a realistic cloud and precipitation distribution that is consistent with the observed dynamic and physical features. The analysis shows an improved representation of monsoon precipitation and its interaction with dynamics over West Africa. Most significantly, assimilation of precipitation-affected microwave radiance has a positive impact on the distribution of precipitation intensity and also modulates the propagation of cloud precipitation systems associated with the African easterly jet. Using an ensemble-based assimilation technique that allows state-dependent forecast error covariance among dynamical and microphysical variables, this work shows that the assimilation of precipitation-sensitive microwave radiances over the West African monsoon rainband enables initialization of storms. These storms show the characteristics of continental tropical convection that enhance the connection between tropical waves and organized convection systems.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sara Q. Zhang, sara.q.zhang@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land-Surface Emissivities at Microwave Frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambon, P., S. Q. Zhang, A. Y. Hou, M. Zupanski, and S. H. Cheung, 2014: Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 12191235, doi:10.1002/qj.2215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-104606, Vol. 15, 38 pp.

  • Chou, M.-D., and M. J. Suarez, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-2001-104606, Vol. 19, 55 pp.

  • Ebert, E. E., 2008: Fuzzy verification of high-resolution forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, doi:10.1002/met.25.

  • Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, doi:10.1002/qj.830.

  • Geer, A. J., P. Bauer, and P. Lopez, 2010: Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Quart. J. Roy. Meteor. Soc., 136, 18861905, doi:10.1002/qj.681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, doi:10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. Biasutti, I. M. Held, and A. H. Sobel, 2008: A global perspective on African climate. Climatic Change, 90, 359383, doi:10.1007/s10584-008-9396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C. K., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. L. Eastman, and W.-K. Tao, 2008: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Modell. Software, 23, 169181, doi:10.1016/j.envsoft.2007.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, H. K. Nowell, and G. Liu, 2013: Scattering computations of snow aggregates from simple geometrical particle models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 14091417, doi:10.1109/JSTARS.2013.2255262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. Olson, and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, doi:10.1175/BAMS-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multisensor satellite radiance-based evaluation for regional Earth system modeling. J. Geophys. Res. Atmos., 119, 84508475, doi:10.1002/2013JD021424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., D. A. Randall, and C. Stan, 2014: Simulations of the West African monsoon with a superparameterized climate model. Part I: The seasonal cycle. J. Climate, 27, 83038322, doi:10.1175/JCLI-D-13-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20, 14871503, doi:10.1175/JCLI4059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35, 1321, doi:10.1016/0022-4073(86)90088-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 5169, doi:10.1016/0022-4073(88)90031-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45, 702720, doi:10.1175/JAM2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer and in situ observations. J. Appl. Meteor. Climatol., 55, 709722, doi:10.1175/JAMC-D-15-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, doi:10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, doi:10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of interactive aerosol on the African easterly jet in the NASA GEOS-5 global forecasting system. Wea. Forecasting, 26, 504519, doi:10.1175/WAF-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, A. da Silva, and T. Matsui, 2014: Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys. Res. Lett., 41, 32823288, doi:10.1002/2014GL059918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, doi:10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2012: The MERRA-Land Data Product. GMAO Office Note No. 3 (version 1.2), 38 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., J. Lafore, C. Piriou, and J. Redelsperger, 2005: Extratropical dry-air intrusions into the West African monsoon midtroposphere: An important factor for the convective activity over the Sahel. J. Atmos. Sci., 62, 390407, doi:10.1175/JAS-3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., P. Chambon, I. Jobard, P. Kirstetter, M. Gosset, and J. C. Bergès, 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, doi:10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seemann, W. S., E. E. Borbas, R. O. Knuteson, G. R. Stephen, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, doi:10.1007/BF01029783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res. Atmos., 118, 35903609, doi:10.1002/jgrd.50363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. Haynes, and R. Marchand, 2008: CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204213, doi:10.1109/TGRS.2002.808312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M.-L., O. Reale, S. Schubert, M. J. Suarez, R. Koster, and P. Pegion, 2009: African easterly jet: Structure and maintenance. J. Climate, 22, 44594480, doi:10.1175/2009JCLI2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., E. Kalnay, B. Hunt, and N. E. Bowler, 2009: Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 251262, doi:10.1002/qj.353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., M. Zupanski, A. Y. Hou, X. Lin, and S. H. Cheung, 2013: Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754772, doi:10.1175/MWR-D-12-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., A. Y. Hou, S. Q. Zhang, M. Zupanski, C. Kummerow, and S. H. Cheung, 2007: Applications of information theory in ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 133, 15331545, doi:10.1002/qj.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726, doi:10.1175/MWR2946.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17171 16226 266
PDF Downloads 318 88 6