Evolution of Mesoscale Convective System Organizational Structure and Convective Line Propagation

David J. Bodine Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by David J. Bodine in
Current site
Google Scholar
PubMed
Close
and
Kristen L. Rasmussen Advanced Study Program, National Center for Atmospheric Research, Boulder, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Kristen L. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines organizational changes and periods of rapid forward propagation in an MCS on 6 July 2015 in South Dakota. The MCS case was the focus of a Plains Elevated Convection at Night (PECAN) IOP. Data from the Sioux Falls WSR-88D and a high-resolution WRF simulation are analyzed to examine two periods of rapid forward propagation (or surges) and organizational changes. During the first surge (surge A), the northern portion of the convective line propagates eastward faster than the southern portion, and the northern portion of the leading line transitions from a single convective core to a multicellular structure as it merges with convection initiation. Radar reflectivity factor Z and graupel concentrations decrease above the melting layer, while at lower altitudes Z increases. The MCS cold pool also intensifies and deepens beneath an expanded region of high rainwater content and subsaturated air. Throughout surge A, a mesoscale circulation with strong rear-to-front near-surface flow and front-to-rear midlevel flow is also evident. By the end of surge A, the leading edge of the MCS cold pool is beneath developing convection initiation ahead of the original convective line while the original convective updraft weakened and moved rearward. This MCS evolution is similar to discrete propagation events discussed in past studies, except with new convection developing along an intersecting convective band. During surge B, the MCS transitions from a multicellular structure to a single, intense updraft. Smaller microphysical and thermodynamic changes are observed within the MCS during surge B compared to surge A, and the mesoscale circulation continues to develop.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0406.s1.

Corresponding author: David Bodine, bodine@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

This study examines organizational changes and periods of rapid forward propagation in an MCS on 6 July 2015 in South Dakota. The MCS case was the focus of a Plains Elevated Convection at Night (PECAN) IOP. Data from the Sioux Falls WSR-88D and a high-resolution WRF simulation are analyzed to examine two periods of rapid forward propagation (or surges) and organizational changes. During the first surge (surge A), the northern portion of the convective line propagates eastward faster than the southern portion, and the northern portion of the leading line transitions from a single convective core to a multicellular structure as it merges with convection initiation. Radar reflectivity factor Z and graupel concentrations decrease above the melting layer, while at lower altitudes Z increases. The MCS cold pool also intensifies and deepens beneath an expanded region of high rainwater content and subsaturated air. Throughout surge A, a mesoscale circulation with strong rear-to-front near-surface flow and front-to-rear midlevel flow is also evident. By the end of surge A, the leading edge of the MCS cold pool is beneath developing convection initiation ahead of the original convective line while the original convective updraft weakened and moved rearward. This MCS evolution is similar to discrete propagation events discussed in past studies, except with new convection developing along an intersecting convective band. During surge B, the MCS transitions from a multicellular structure to a single, intense updraft. Smaller microphysical and thermodynamic changes are observed within the MCS during surge B compared to surge A, and the mesoscale circulation continues to develop.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0406.s1.

Corresponding author: David Bodine, bodine@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Supplementary Materials

    • Supplemental Materials (ZIP 5.97 MB)
Save
  • Biggerstaff, M. I., and R. A. Houze, 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze, 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121, 5577, doi:10.1002/qj.49712152104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motions of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, doi:10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, doi:10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effects of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, doi:10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, doi:10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to warm season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, doi:10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294299, doi:10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, doi:10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, doi:10.1175/2007JAS2507.1.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, doi:10.1175/JHM-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., R. A. Houze Jr., M. I. Biggerstaff, and T. Matejka, 1988: The Oklahoma–Kansas Mesoscale Convective System of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev., 116, 14091430, doi:10.1175/1520-0493(1988)116<1409:TOMCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1994: Precipitation observed in Oklahoma mesoscale convective systems with a polarimetric radar. J. Appl. Meteor., 33, 455464, doi:10.1175/1520-0450(1994)033<0455:POIOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34, 21212134, doi:10.1175/1520-0450(1995)034<2120:PAAMAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, doi:10.1175/WAF-D-12-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze, 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117133, doi:10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze, 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, doi:10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988a: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci., 45, 16291641, doi:10.1175/1520-0469(1988)045<1629:MCFBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., R. E. Stewart, and C. A. Lin, 1988b: Mesoscale circulations forced by melting snow. Part II: Applications to meteorological features. J. Atmos. Sci., 45, 16421650, doi:10.1175/1520-0469(1988)045<1642:MCFBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. R. Scala, B. Ferrier, and J. Simpson, 1995: The effect of melting processes on the development of a tropical and midlatitude squall line. J. Atmos. Sci., 52, 19341948, doi:10.1175/1520-0469(1995)052<1934:TEOMPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall line and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, doi:10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR Earth Observing Laboratory, 2016: EOL field catalog (1995–present). Accessed 25 September 2016, doi:10.5065/D6SQ8XFB.

    • Crossref
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, doi:10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W.-K. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 11911 135, doi:10.1002/jgrd.50798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., M. Coniglio, M. Parker, and R. Schumacher, 2016: CSU/NCSU/NSSL MGAUS radiosonde data, version 3.0. UCAR/NCAR Earth Observing Laboratory, accessed 16 October 2016, doi:10.5065/D6W66HXN.

    • Crossref
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9768 8836 81
PDF Downloads 744 162 29