Radar Kinematic Information as a Surrogate for Isentropes in Stratiform Precipitation Systems

Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
and
Jordan I. Christian Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Jordan I. Christian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study illustrates that dual-Doppler-derived wind shear (vertical gradient of the horizontal wind) in stratiform, nonturbulent flow is structured in long, thin striations. The reason this has not been documented before is that scanning ground-based radars have inadequate vertical resolution, deteriorating with range. Here data from an airborne radar with a fine, range-independent vertical resolution are used. A comparison of the radar-derived wind shear with model output of isentropes in vertical transects in the comma head of two frontal disturbances suggests that the wind shear layers describe material surfaces. Model output itself further confirms the alignment of isentropes with wind shear in vertical transects. Thus, Doppler-radar-derived wind shear (a kinematic conserved variable) may serve as a suitable proxy for thermodynamic conserved variables such as equivalent potential temperature in stratiform precipitation. Furthermore, the presence of shear striations in vertical transects can be used as a marker for nonturbulent flow, and their persistence as an indicator of limited dispersion in such flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

Abstract

This study illustrates that dual-Doppler-derived wind shear (vertical gradient of the horizontal wind) in stratiform, nonturbulent flow is structured in long, thin striations. The reason this has not been documented before is that scanning ground-based radars have inadequate vertical resolution, deteriorating with range. Here data from an airborne radar with a fine, range-independent vertical resolution are used. A comparison of the radar-derived wind shear with model output of isentropes in vertical transects in the comma head of two frontal disturbances suggests that the wind shear layers describe material surfaces. Model output itself further confirms the alignment of isentropes with wind shear in vertical transects. Thus, Doppler-radar-derived wind shear (a kinematic conserved variable) may serve as a suitable proxy for thermodynamic conserved variables such as equivalent potential temperature in stratiform precipitation. Furthermore, the presence of shear striations in vertical transects can be used as a marker for nonturbulent flow, and their persistence as an indicator of limited dispersion in such flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu
Save
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., and B. Geerts, 2016: Airborne radar observations of lake-effect snow bands over the New York Finger Lakes. Mon. Wea. Rev., 144, 38953914, doi:10.1175/MWR-D-16-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, doi:10.1109/TGRS.2006.881745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and P. V. Hobbs, 1991: The organization and structure of clouds and precipitation on the Mid-Atlantic Coast of the USA. Part IV: Retrieval of thermodynamic and cloud microphysical structures of a frontal rainband from Doppler radar data. J. Atmos. Sci., 48, 12871305, doi:10.1175/1520-0469(1991)048<1287:OASOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by airborne radar. Mon. Wea. Rev., 134, 251272, doi:10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and D. P. Jorgensen, 1995: Dynamic aspects of the distinctly three-dimensional mesoscale convective system. Mon. Wea. Rev., 123, 31943214, doi:10.1175/1520-0493(1995)123<3194:DAOADT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp.

    • Crossref
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Elsevier, 466 pp.

    • Crossref
    • Export Citation
  • Leon, D., G. Vali, and M. Lothon, 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23, 322, doi:10.1175/JTECH1820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., R. M. Rauber, G. M. McFarquhar, J. A. Finlon, D. M. Plummer, A. A. Rosenow, and B. F. Jewett, 2017: A microphysical analysis of elevated convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 74, 6991, doi:10.1175/JAS-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014a: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014b: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, doi:10.1175/MWR-D-14-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 21422157, doi:10.1175/1520-0493(1985)113<2142:ROTFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., S. P. Ballard, and Z. Li, 2014: Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for nowcasting. Quart. J. Roy. Meteor. Soc., 140, 22982314, doi:10.1002/qj.2298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., and S. Haimov, 2001: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens., 39, 190193, doi:10.1109/36.898682.

  • Weckwerth, T., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, D., B. Geerts, X. Jing, P. T. Bergmaier, J. R. Minder, W. J. Steenburgh, and L. S. Campbell, 2016: Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario. Mon. Wea. Rev., 144, 42214244, doi:10.1175/MWR-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., R. Ware, W. Zhang, G. Feng, K. Liao, and Y. Liu, 2014: Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res., 140–141, 8594, doi:10.1016/j.atmosres.2014.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1628 1336 67
PDF Downloads 263 56 1