Abstract
This study illustrates that dual-Doppler-derived wind shear (vertical gradient of the horizontal wind) in stratiform, nonturbulent flow is structured in long, thin striations. The reason this has not been documented before is that scanning ground-based radars have inadequate vertical resolution, deteriorating with range. Here data from an airborne radar with a fine, range-independent vertical resolution are used. A comparison of the radar-derived wind shear with model output of isentropes in vertical transects in the comma head of two frontal disturbances suggests that the wind shear layers describe material surfaces. Model output itself further confirms the alignment of isentropes with wind shear in vertical transects. Thus, Doppler-radar-derived wind shear (a kinematic conserved variable) may serve as a suitable proxy for thermodynamic conserved variables such as equivalent potential temperature in stratiform precipitation. Furthermore, the presence of shear striations in vertical transects can be used as a marker for nonturbulent flow, and their persistence as an indicator of limited dispersion in such flow.
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).