Assessment of Radio Occultation Observations from the COSMIC-2 Mission with a Simplified Observing System Simulation Experiment Configuration

L. Cucurull NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by L. Cucurull in
Current site
Google Scholar
PubMed
Close
,
R. Li Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by R. Li in
Current site
Google Scholar
PubMed
Close
, and
T. R. Peevey Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by T. R. Peevey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Cucurull, lidia.cucurull@noaa.gov

Abstract

The mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Cucurull, lidia.cucurull@noaa.gov
Save
  • Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16. [Available online at https://www.ecmwf.int/en/elibrary/14602-newsletter-no123-spring-2010.]

  • Anlauf, H., D. Pingel, and A. Rhodin, 2011: Assimilation of GPS radio occultation data at DWD. Atmos. Meas. Tech., 4, 11051113, doi:10.5194/amt-4-1105-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136, 257275, doi:10.1175/2007MWR1951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130, doi:10.2151/jmsj1965.75.1B_111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and T. S. Pagano, 2014: Observing system simulation experiments to assess the potential impact of proposed satellite instruments on hurricane prediction. Imaging Spectrometry XIX, P. Mouroulis and T. S. Pagano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9222), doi:10.1117/12.2063648.

    • Crossref
    • Export Citation
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, doi:10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2015: Observing system simulation experiments (OSSEs) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction. J. Atmos. Oceanic Technol., 32, 15931613, doi:10.1175/JTECH-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Radnóti, S. B. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., 142, 555572, doi:10.1175/MWR-D-13-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140, 25462562, doi:10.1002/qj.2320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S., and Coauthors, 2016: Community Global Observing System Simulation Experiment (OSSE) Package: CGOP. Description and usage. J. Atmos. Oceanic Technol., 33, 17591777, doi:10.1175/JTECH-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, doi:10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and J. C. Derber, 2008: Operational implementation of COSMIC observations into the NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711, doi:10.1175/2008WAF2007070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and R. A. Anthes, 2015: Impact of loss of microwave and radio occultation observations in operational numerical weather prediction in support of the U.S. data gap mitigation activities. Wea. Forecasting, 30, 255269, doi:10.1175/WAF-D-14-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, doi:10.1029/2012JD017782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, doi:10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • English, S., and Coauthors, 2013: Impact of satellite data. ECMWF Tech. Memo. 711, 46 pp. [Available online at https://www.ecmwf.int/en/elibrary/9301-impact-satellite-data.]

  • Halliwell, G. R., Jr., A. Srinivasan, V. Kourafalou, H. Yang, D. Willey, M. Le Hénaff, and R. Atlas, 2014: Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Oceanic Technol., 31, 105130, doi:10.1175/JTECH-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., V. Kourafalou, M. Le Hénaff, L. K. Shay, and R. Atlas, 2015: OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico. Prog. Oceanogr., 130, 3246, doi:10.1016/j.pocean.2014.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., S. B. Healy, P. Bauer, and S. J. English, 2013: Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations. Mon. Wea. Rev., 141, 43954413, doi:10.1175/MWR-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, doi:10.1256/qj.04.182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, doi:10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, J. T. Schofield, and R. Linfield, 1997: Observing Earth’s atmosphere with radio occultation measurements. J. Geophys. Res., 102, 23 42923 465, doi:10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsutani, M., and Coauthors, 2006: Observing system simulation experiments at NCEP. NCEP Office Note 451, 34 pp. [Available online at http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on451.pdf.]

  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Jet Propulsion Laboratory Publ. 94-18, 142 pp. [Available online at https://ntrs.nasa.gov/search.jsp?R=19960008694.]

  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, doi:10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., A. Darmenov, A. da Silva, R. Gelaro, A. Molod, L. Ott, and M. J. Suarez, 2015: A 7-km non-hydrostatic global mesoscale simulation for OSSEs with the Goddard Earth Observing System model (GEOS-5). 19th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 3.1. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper260701.html.]

  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, doi:10.1002/qj.521.

  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29 84929 866, doi:10.1029/97JD02400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocken, C., Y.-H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, 2000: COSMIC system description. Terr. Atmos. Oceanic Sci., 11, 2152, doi:10.3319/TAO.2000.11.1.21(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2840 2381 85
PDF Downloads 191 45 10