Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012

Massimiliano Burlando Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnic School, University of Genoa, Genoa, Italy

Search for other papers by Massimiliano Burlando in
Current site
Google Scholar
PubMed
Close
,
Djordje Romanić Wind Engineering, Energy and Environment (WindEEE) Research Institute, Western University, London, Ontario, Canada

Search for other papers by Djordje Romanić in
Current site
Google Scholar
PubMed
Close
,
Giovanni Solari Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnic School, University of Genoa, Genoa, Italy

Search for other papers by Giovanni Solari in
Current site
Google Scholar
PubMed
Close
,
Horia Hangan Wind Engineering, Energy and Environment (WindEEE) Research Institute, Western University, London, Ontario, Canada

Search for other papers by Horia Hangan in
Current site
Google Scholar
PubMed
Close
, and
Shi Zhang School of Civil Engineering, and Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing Jiaotong University, Beijing, China

Search for other papers by Shi Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Mediterranean is a “hot spot” for the genesis of different types of severe weather events, including potentially damaging wind phenomena like downbursts, whose occurrence and evolution in this geographical region have not been documented in the literature. This paper is part of an interdisciplinary collaboration between atmospheric scientists and wind engineers with the objective of conducting a comprehensive analysis of the field measurements and weather scenarios related to nonsynoptic wind systems in this area. The downburst that struck the Livorno coast of Italy at about 1310 local time 1 October 2012 is investigated as a relevant test case for such severe wind events. The wind velocity records detected by ultrasonic anemometers, part of a monitoring network created for the European “Wind and Ports” and “Wind, Ports and Sea” projects, are analyzed and decomposed in order to inspect the main statistical features of this transient event. The analysis of the meteorological precursors to this event is carried out making use of model analyses, standard in situ measurements, remote sensing techniques, proxy data, and direct observations. The results obtained bring new insights into a downburst’s onset and detection in the Mediterranean, its evolution at the local scale, and possible connections to specific synoptic-scale weather conditions like secondary cyclogenesis in the lee of the Alps.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Massimiliano Burlando, massimiliano.burlando@unige.it

Abstract

The Mediterranean is a “hot spot” for the genesis of different types of severe weather events, including potentially damaging wind phenomena like downbursts, whose occurrence and evolution in this geographical region have not been documented in the literature. This paper is part of an interdisciplinary collaboration between atmospheric scientists and wind engineers with the objective of conducting a comprehensive analysis of the field measurements and weather scenarios related to nonsynoptic wind systems in this area. The downburst that struck the Livorno coast of Italy at about 1310 local time 1 October 2012 is investigated as a relevant test case for such severe wind events. The wind velocity records detected by ultrasonic anemometers, part of a monitoring network created for the European “Wind and Ports” and “Wind, Ports and Sea” projects, are analyzed and decomposed in order to inspect the main statistical features of this transient event. The analysis of the meteorological precursors to this event is carried out making use of model analyses, standard in situ measurements, remote sensing techniques, proxy data, and direct observations. The results obtained bring new insights into a downburst’s onset and detection in the Mediterranean, its evolution at the local scale, and possible connections to specific synoptic-scale weather conditions like secondary cyclogenesis in the lee of the Alps.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Massimiliano Burlando, massimiliano.burlando@unige.it
Save
  • Alpert, P., and Coauthors, 2002: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett., 29, doi:10.1029/2001GL013554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, doi:10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1995: Observations and Theory of Weather Systems. Vol. II. Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 608 pp.

  • Braza, M., R. Perrin, and Y. Hoarau, 2006: Turbulence properties in the cylinder wake at high Reynolds numbers. J. Fluids Struct., 22, 757771, doi:10.1016/j.jfluidstructs.2006.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlando, M., 2009: The synoptic-scale surface wind climate regimes of the Mediterranean Sea according to the cluster analysis of ERA-40 wind fields. Theor. Appl. Climatol., 96, 6983, doi:10.1007/s00704-008-0033-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271287, doi:10.1002/qj.49710444004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, doi:10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chay, M. T., and C. W. Letchford, 2002: Pressure distributions on a cube in a simulated thunderstorm downburst. Part A: Stationary downburst observations. J. Wind Eng. Ind. Aerodyn., 90, 711732, doi:10.1016/S0167-6105(02)00158-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chay, M. T., F. Albermani, and B. Wilson, 2006: Numerical and analytical simulation of downburst wind loads. Eng. Struct., 28, 240254, doi:10.1016/j.engstruct.2005.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and C. W. Letchford, 2004: A deterministic–stochastic hybrid model of downbursts and its impact on a cantilevered structure. Eng. Struct., 26, 619629, doi:10.1016/j.engstruct.2003.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and C. W. Letchford, 2007: Numerical simulation of extreme winds from thunderstorm downbursts. J. Wind Eng. Ind. Aerodyn., 95, 977990, doi:10.1016/j.jweia.2007.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, E. C. C., 1999: Extreme wind characteristics over Singapore—An area in the equatorial belt. J. Wind Eng. Ind. Aerodyn., 83, 6169, doi:10.1016/S0167-6105(99)00061-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, E. C. C., 2004: Field measurement and experimental study of wind speed profile during thunderstorms. J. Wind Eng. Ind. Aerodyn., 92, 275290, doi:10.1016/j.jweia.2003.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, E. C. C., and F. A. Hidayat, 2002: Dynamic response of structures to thunderstorm winds. Prog. Struct. Eng. Mater., 4, 408416, doi:10.1002/pse.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, E. C. C., and A. Tanurdjaja, 2002: Extreme wind studies in Singapore. An area with mixed weather system. J. Wind Eng. Ind. Aerodyn., 90, 16111630, doi:10.1016/S0167-6105(02)00274-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, N. J., R. I. Harris, and R. Whiting, 2003: Extreme wind speeds in mixed climates revisited. J. Wind Eng. Ind. Aerodyn., 91, 403422, doi:10.1016/S0167-6105(02)00397-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, A. G., 1961: The application of statistical concepts to the wind loading of structures. Proc. Inst. Civ. Eng., 19, 449472.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. W. Burgess, and M. Foster, 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588592.

  • De Gaetano, P., M. P. Repetto, T. Repetto, and G. Solari, 2014: Separation and classification of extreme wind events from anemometric records. J. Wind Eng. Ind. Aerodyn., 126, 132143, doi:10.1016/j.jweia.2014.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derrien, M., H. Le Gléau, and P. Fernandez, 2013: Algorithm theoretical basis document for “cloud products.” Météo-France, Toulouse, France, Rep. SAF/NWC/CDOP/MFL/SCI/ATBD/01, 87 pp. [Available online at http://www.cmsaf.eu/EN/Documentation/Documentation/ATBD/pdf/SAF-NWC-CDOP-MFL-SCI-ATBD-01_v3_2.pdf.]

  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, doi:10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durañona, V., M. Sterling, and C. J. Baker, 2007: An analysis of extreme non-synoptic winds. J. Wind Eng. Ind. Aerodyn., 95, 10071027, doi:10.1016/j.jweia.2007.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2013: MTG-FCI: ATBD for cloud mask and cloud analysis product. European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany, 60 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_atbd_cloud_mask_analysis&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Flocas, H. A., I. Simmonds, J. Kouroutzoglou, K. Keay, M. Hatzaki, V. Bricolas, and D. Asimakopoulos, 2010: On cyclonic tracks over the eastern Mediterranean. J. Climate, 23, 52435257, doi:10.1175/2010JCLI3426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, doi:10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1985: The downburst: Microburst and macroburst. Satellite and Mesometeorology Research Project, Dept. of the Geophysical Sciences, University of Chicago, Chicago, IL, 136 pp.

  • Fujita, T. T., 1986: DFW microburst on August 2, 1985. 1st ed. Satellite and Mesometeorology Research Project, Dept. of the Geophysical Sciences, University of Chicago, Chicago, IL, 154 pp.

  • Fujita, T. T., 1990: Downburst: Meteorological features and wind field characteristics. J. Wind Eng. Ind. Aerodyn., 36, 7586, doi:10.1016/0167-6105(90)90294-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gast, K. D., and S. Schroeder, 2004: Extreme wind events observed in the 2002 Thunderstorm Outflow Experiment. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 7A.6. [Available online at https://ams.confex.com/ams/11aram22sls/webprogram/Paper81653.html.]

  • Geerts, B., 2001: Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia. Wea. Forecasting, 16, 261269, doi:10.1175/1520-0434(2001)016<0261:EDRMSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genoveś, A., and A. Jansà, 1989: Statistical approach to mesoscale non-alpine West Mediterranean cyclogenesis. Report on the Third Session of the Steering Group on Mediterranean Cyclones Study Project, PSMP Rep. Series 31, WMO TD-298, 77–85.

  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.

  • Giorgi, F., and Coauthors, 2001: Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys. Res. Lett., 28, 33173320, doi:10.1029/2001GL013150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, R. G., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, doi:10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldman, J. L., and P. Sloss, 1969: Structure of the leading edge of thunderstorm cold-air outflow. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 75–79.

  • Gomes, L., and B. J. Vickery, 1976: On thunderstorm wind gusts in Australia. Civ. Eng. Trans. Ind. Eng. Aust., 18, 3339.

  • Gomes, L., and B. J. Vickery, 1978: Extreme wind speeds in mixed wind climates. J. Wind Eng. Ind. Aerodyn., 2, 331344, doi:10.1016/0167-6105(78)90018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunter, W. S., and J. L. Schroeder, 2015: High-resolution full-scale measurements of thunderstorm outflow winds. J. Wind Eng. Ind. Aerodyn., 138, 1326, doi:10.1016/j.jweia.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hangan, H., 2014: The Wind Engineering Energy and Environment (WindEEE) Dome at Western University, Canada. Wind Eng., Japan Assoc. Wind Eng., 39, 350351, doi:10.5359/jawe.39.350.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1988: Structure and life cycle of microburst outflows observed in Colorado. J. Appl. Meteor., 27, 900927, doi:10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. D., H. M. Hangan, J. L. Schroeder, C. W. Letchford, and K. D. Orwig, 2008: A forensic study of the Lubbock-Reese downdraft of 2002. Wind Struct., 11, 137152, doi:10.12989/was.2008.11.2.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansa, A., A. Genoves, M. A. Picornell, J. Campins, R. Riosalido, and O. Carretero, 2001: Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach. Meteor. Appl., 8, 4356, doi:10.1017/S1350482701001049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., and Coauthors, 2007: Micrometeorological observations of a microburst in southern Finland. Bound.-Layer Meteor., 125, 343359, doi:10.1007/s10546-007-9204-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasperski, M., 2002: A new wind zone map of Germany. J. Wind Eng. Ind. Aerodyn., 90, 12711287, doi:10.1016/S0167-6105(02)00257-X.

  • Kim, J., and H. Hangan, 2007: Numerical simulations of impinging jets with application to downbursts. J. Wind Eng. Ind. Aerodyn., 95, 279298, doi:10.1016/j.jweia.2006.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, W., 1957: Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere. U.S. Weather Bureau Paper 40, 60 pp.

  • Kotroni, V., and K. Lagouvardos, 2016: Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett., 11, 034006, doi:10.1088/1748-9326/11/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouroutzoglou, J., H. A. Flocas, K. Keay, I. Simmonds, and M. Hatzaki, 2011: Climatological aspects of explosive cyclones in the Mediterranean. Int. J. Climatol., 31, 17851802, doi:10.1002/joc.2203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, D., and A. Kareem, 2009: Gust-front factor: New framework for wind load effects on structures. J. Struct. Eng., 135, 717732, doi:10.1061/(ASCE)0733-9445(2009)135:6(717).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letchford, C. W., and M. T. Chay, 2002: Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations. J. Wind Eng. Ind. Aerodyn., 90, 733753, doi:10.1016/S0167-6105(02)00163-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letchford, C. W., C. Mans, and M. T. Chay, 2002: Thunderstorms—Their importance in wind engineering (a case for the next generation wind tunnel). J. Wind Eng. Ind. Aerodyn., 90, 14151433, doi:10.1016/S0167-6105(02)00262-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, W. E., L. G. Orf, E. Savory, and C. Novacco, 2007: Proposed large-scale modelling of the transient features of a downburst outflow. Wind Struct., 10, 315346, doi:10.12989/was.2007.10.4.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lionello, P., 2005: Flooding and Environmental Challenges for Venice and Its Lagoon: State of Knowledge. Cambridge University Press, 691 pp.

  • Lionello, P., and Coauthors, 2006: Chapter 6 cyclones in the Mediterranean region: Climatology and effects on the environment. Dev. Earth Environ. Sci., 4, 325372, doi:10.1016/S1571-9197(06)80009-1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, F. T., J. A. Main, and E. Simiu, 2009: Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis. J. Wind Eng. Ind. Aerodyn., 97, 120131, doi:10.1016/j.jweia.2009.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F. T., D. A. Smith, J. L. Schroeder, and K. C. Mehta, 2014: Thunderstorm characteristics of importance to wind engineering. J. Wind Eng. Ind. Aerodyn., 125, 121132, doi:10.1016/j.jweia.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., P. A. Jiménez, J. Dudhia, and J. P. Montávez, 2016: Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF Model. Mon. Wea. Rev., 144, 26852693, doi:10.1175/MWR-D-15-0449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maheras, P., H. A. Flocas, I. Patrikas, and C. Anagnostopoulou, 2001: A 40 year objective climatology of surface cyclones in the Mediterranean region: Spatial and temporal distribution. Int. J. Climatol., 21, 109130, doi:10.1002/joc.599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 14741492, doi:10.1175/1520-0493(1988)116<1474:GFCATK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, M., C. W. Letchford, and D. L. James, 2005: Pulsed jet simulation of a stationary thunderstorm downburst. Part A: Physical structure and flow field characterization. J. Wind Eng. Ind. Aerodyn., 93, 557580, doi:10.1016/j.jweia.2005.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, M., G. S. Wood, and D. F. Fletcher, 2010: Numerical investigation of the influence of topography on simulated downburst wind fields. J. Wind Eng. Ind. Aerodyn., 98, 2133, doi:10.1016/j.jweia.2009.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattocks, C., and R. Bleck, 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis. Mon. Wea. Rev., 114, 20332056, doi:10.1175/1520-0493(1986)114<2033:JSDAGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1994: WINDEX—A new index for forecasting microburst potential. Wea. Forecasting, 9, 532541, doi:10.1175/1520-0434(1994)009<0532:WNIFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConville, A. C., M. Sterling, and C. J. Baker, 2009: The physical simulation of thunderstorm downbursts using an impinging jet. Wind Struct., 12, 133149, doi:10.12989/was.2009.12.2.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCullough, M., D. K. Kwon, A. Kareem, and L. Wang, 2014: Efficacy of averaging interval for nonstationary winds. J. Eng. Mech., 140, 119, doi:10.1061/(ASCE)EM.1943-7889.0000641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGinley, J., 1982: A diagnosis of Alpine lee cyclogenesis. Mon. Wea. Rev., 110, 12711287, doi:10.1175/1520-0493(1982)110<1271:ADOALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010a: Development and tropical transition of an Alpine lee cyclone. Part I: Case analysis and evaluation of numerical guidance. Mon. Wea. Rev., 138, 22812307, doi:10.1175/2009MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010b: Development and tropical transition of an Alpine lee cyclone. Part II: Orographic influence on the development pathway. Mon. Wea. Rev., 138, 23082326, doi:10.1175/2009MWR3148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 18791898, doi:10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissen, K. M., G. C. Leckebusch, J. G. Pinto, D. Renggli, S. Ulbrich, and U. Ulbrich, 2010: Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci., 10, 13791391, doi:10.5194/nhess-10-1379-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., and J. R. Anderson, 1999: A numerical study of traveling microbursts. Mon. Wea. Rev., 127, 12441258, doi:10.1175/1520-0493(1999)127<1244:ANSOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., E. Kantor, and E. Savory, 2012: Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model. J. Wind Eng. Ind. Aerodyn., 104–106, 547557, doi:10.1016/j.jweia.2012.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peppier, R. A., 1988: A review of static instability indices and related thermodynamic parameters. Illinois State Water Survey Miscellaneous Publ. 104, 87 pp. [Available online at http://www.isws.illinois.edu/pubdoc/mp/iswsmp-104.pdf.]

  • Petterssen, S., 1956: Motion and Motion Systems. Vol. I. Weather Analysis and Forecasting, 2nd ed. McGraw-Hill, 428 pp.

  • Pistotnik, G., A. M. Holzer, R. Kaltenböck, and S. Tschannett, 2011: An F3 downburst in Austria—A case study with special focus on the importance of real-time site surveys. Atmos. Res., 100, 565579, doi:10.1016/j.atmosres.2010.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 21432165, doi:10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radinović, D., 1987: Mediterranean cyclones and their influence on the weather and climate. Programme on Short- and Medium-Range Weather Prediction Research Rep. 24, WMO, 131 pp.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repetto, M. P., M. Burlando, G. Solari, P. De Gaetano, M. Pizzo, and M. Tizzi, 2017: A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind. Adv. Eng. Software, doi:10.1016/j.advengsoft.2017.03.002, in press.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2, 196211, doi:10.3402/tellusa.v2i3.8546.

    • Search Google Scholar
    • Export Citation
  • Riera, J. D., and L. F. Nanni, 1989: Pilot study of extreme wind velocities in a mixed climate considering wind orientation. J. Wind Eng. Ind. Aerodyn., 32, 1120, doi:10.1016/0167-6105(89)90012-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanić, D., M. Ćurić, M. Lompar, and I. Jovičić, 2016a: Contributing factors to Koshava wind characteristics. Int. J. Climatol., 36, 956973, doi:10.1002/joc.4397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanić, D., M. Ćurić, M. Zarić, M. Lompar, and I. Jovičić, 2016b: Investigation of an extreme koshava wind episode of 30 January–4 February 2014. Atmos. Sci. Lett., 17, 199206, doi:10.1002/asl.643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowcroft, J., 2011: Vertical wind shear profiles in downburst events and the insufficiency of wind turbine design codes. 14th Australasian Wind Engineering Society Workshop, Canberra, ACT, Australia, AWES, 50–53. [Available online at https://www.awes.org/archives/workshop-proceedings/awes-14/.]

  • Sengupta, A., and P. P. Sarkar, 2008: Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J. Wind Eng. Ind. Aerodyn., 96, 345365, doi:10.1016/j.jweia.2007.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, D. J., 1987: The passage of a weak thunderstorm downburst over an instrumented tower. Mon. Wea. Rev., 115, 11931205, doi:10.1175/1520-0493(1987)115<1193:TPOAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, T. S., M. C. Ong, W. Y. Quek, Z. W. Sum, W. X. Lai, and M. Skote, 2016: A numerical study of microburst-like wind load acting on different block array configurations using an impinging jet model. J. Fluids Struct., 61, 184204, doi:10.1016/j.jfluidstructs.2015.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., 2014: Emerging issues and new frameworks for wind loading on structures in mixed climates. Wind Struct., 19, 295320, doi:10.12989/was.2014.19.3.295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., 2016: Thunderstorm response spectrum technique: Theory and applications. Eng. Struct., 108, 2846, doi:10.1016/j.engstruct.2015.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., and G. Piccardo, 2001: Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab. Eng. Mech., 16, 7386, doi:10.1016/S0266-8920(00)00010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., M. P. Repetto, M. Burlando, P. De Gaetano, M. Pizzo, M. Tizzi, and M. Parodi, 2012: The wind forecast for safety management of port areas. J. Wind Eng. Ind. Aerodyn., 104–106, 266277, doi:10.1016/j.jweia.2012.03.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., M. Burlando, P. De Gaetano, and M. P. Repetto, 2015a: Characteristics of thunderstorms relevant to the wind loading of structures. Wind Struct., 20, 763791, doi:10.12989/was.2015.20.6.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., P. De Gaetano, and M. P. Repetto, 2015b: Thunderstorm response spectrum: Fundamentals and case study. J. Wind Eng. Ind. Aerodyn., 143, 6277, doi:10.1016/j.jweia.2015.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and J. R. Anderson, 1993: Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci., 50, 13291348, doi:10.1175/1520-0469(1993)050<1329:NSOMPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayama, H., H. Niino, S. Watanabe, and J. Sugaya, 1997: Downbursts in the northwestern part of Saitama Prefecture on 8 September 1994. J. Meteor. Soc. Japan, 75, 885905, doi:10.2151/jmsj1965.75.4_885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 16851696, doi:10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., G. R. Bigg, and T. D. Davies, 2002: Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Wea. Rev., 130, 549569, doi:10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twisdale, L. A., and P. J. Vickery, 1992: Research on thunderstorm wind design parameters. J. Wind Eng. Ind. Aerodyn., 41, 545556, doi:10.1016/0167-6105(92)90461-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermeire, B. C., L. G. Orf, and E. Savory, 2011: Improved modeling of downburst outflows for wind engineering applications using a cooling source approach. J. Wind Eng. Ind. Aerodyn., 99, 801814, doi:10.1016/j.jweia.2011.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, doi:10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143, doi:10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., 1990: Understanding and predicting microbursts. Ph.D. thesis, Massachusetts Institute of Technology, 303 pp. [Available online at http://dspace.mit.edu/handle/1721.1/13970.]

  • Wood, G. S., K. C. S. Kwok, N. A. Motteram, and D. F. Fletcher, 2001: Physical and numerical modelling of thunderstorm downburst. J. Wind Eng. Ind. Aerodyn., 89, 535552, doi:10.1016/S0167-6105(00)00090-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., and H. Hangan, 2008: Scale, boundary and inlet condition effects on impinging jets with application to downburst simulations. J. Wind Eng. Ind. Aerodyn., 96, 23832402, doi:10.1016/j.jweia.2008.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., H. Hangan, and P. Yu, 2008: Analytical solutions for a family of Gaussian impinging jets. ASME J. Appl. Mech., 75, 021019, doi:10.1115/1.2775502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, C.-H., D.-I. Lee, M.-Y. Kang, and H.-J. Kim, 2016: Classification of rain types using drop size distributions and polarimetric radar: Case study of a 2014 flooding event in Korea. Atmos. Res., 181, 211219, doi:10.1016/j.atmosres.2016.06.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., G. Solari, P. De Gaetano, M. Burlando, and M. P. Repetto, 2017: A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures. Probab. Eng. Mech., doi:10.1016/j.probengmech.2017.06.003, in press.

    • Crossref
    • Export Citation
  • Zhang, Y., H. Hu, and P. P. Sarkar, 2013: Modeling of microburst outflows using impinging jet and cooling source approaches and their comparison. Eng. Struct., 56, 779793, doi:10.1016/j.engstruct.2013.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3508 1944 153
PDF Downloads 1046 188 12