Impact of Tibetan Plateau Surface Heating on Persistent Extreme Precipitation Events in Southeastern China

Bingcheng Wan State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Bingcheng Wan in
Current site
Google Scholar
PubMed
Close
,
Zhiqiu Gao State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zhiqiu Gao in
Current site
Google Scholar
PubMed
Close
,
Fei Chen National Center for Atmospheric Research, Boulder, Colorado, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
, and
Chungu Lu National Science Foundation, Directorate for Geosciences, Division of Atmospheric and Geospace Science, Arlington, Virginia

Search for other papers by Chungu Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper combines observations, climatic analysis, and numerical modeling to investigate the Tibetan Plateau’s (TP) surface heating conditions’ influence on extreme persistent precipitation events (PEPEs) in southeastern China. Observations indicated an increase of TP surface air temperature 3–4 days prior to extreme persistent precipitation events in southeastern China. NCEP reanalysis data revealed a significant low pressure anomaly in southern China and a high pressure anomaly in northern China during extreme persistent precipitation event periods. Using correlation analysis and random resampling nonparametric statistics, a typical PEPE event from 17 to 25 June 2010 was selected for numerical simulation. The Weather Research and Forecasting (WRF) Model was used to investigate the impact of the TP’s surface heating on the evolution of this event. Three contrasting WRF experiments were conducted with different surface heating strengths by changing initial soil moisture over the TP. Different soil conditions generate different intensities of surface sensible heat fluxes and boundary layer structures over the TP resulting in two main effects on downstream convective rainfall: modulating large-scale atmospheric circulations and modifying the water vapor transport at southern China. Increased surface heating in the TP strengthens a high pressure system over the Yangtze Plain, thereby blocking the northward movement of precipitation. It also enhances the water vapor transport from the South China Sea to southern China. The combined effects substantially increase precipitation over most of the southeastern China region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhiqiu Gao, zgao@mail.iap.ac.cn

Abstract

This paper combines observations, climatic analysis, and numerical modeling to investigate the Tibetan Plateau’s (TP) surface heating conditions’ influence on extreme persistent precipitation events (PEPEs) in southeastern China. Observations indicated an increase of TP surface air temperature 3–4 days prior to extreme persistent precipitation events in southeastern China. NCEP reanalysis data revealed a significant low pressure anomaly in southern China and a high pressure anomaly in northern China during extreme persistent precipitation event periods. Using correlation analysis and random resampling nonparametric statistics, a typical PEPE event from 17 to 25 June 2010 was selected for numerical simulation. The Weather Research and Forecasting (WRF) Model was used to investigate the impact of the TP’s surface heating on the evolution of this event. Three contrasting WRF experiments were conducted with different surface heating strengths by changing initial soil moisture over the TP. Different soil conditions generate different intensities of surface sensible heat fluxes and boundary layer structures over the TP resulting in two main effects on downstream convective rainfall: modulating large-scale atmospheric circulations and modifying the water vapor transport at southern China. Increased surface heating in the TP strengthens a high pressure system over the Yangtze Plain, thereby blocking the northward movement of precipitation. It also enhances the water vapor transport from the South China Sea to southern China. The combined effects substantially increase precipitation over most of the southeastern China region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhiqiu Gao, zgao@mail.iap.ac.cn
Save
  • Bao, Q., J. Yang, Y. Liu, G. Wu, and B. Wang, 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138, 23752384, doi:10.1175/2009MWR2950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, doi:10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528, doi:10.1175/1520-0477(1996)077<0519:ESSDIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713, doi:10.1175/JAM2463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2013: Persistent extreme precipitation events in China during 1951–2010. Climate Res., 57, 143155, doi:10.3354/cr01171.

  • China Meteorological Data Service Center, 2008: Dataset of daily climate data from Chinese surface stations for global exchange. Accessed 15 August 2014. [Available online at http://data.cma.cn/en/?r=data/detail&dataCode=SURF_CLI_CHN_MUL_DAY_CES.]

  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, doi:10.2151/jmsj1965.70.1B_373.

  • Ding, Y., and J. C. Chan, 2005: The East Asian summer monsoon: An overview. J. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, doi:10.1007/s00382-004-0488-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, doi:10.1175/2007JCLI1912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 41974212, doi:10.1175/2009JCLI2699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., F. Li, M. Wang, and G. Wu, 2011: Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Climate, 24, 56715682, doi:10.1175/JCLI-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., M. Wang, Y. Lei, and Y. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261275, doi:10.1175/JCLI-D-11-00669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, doi:10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., K. Li, F. Chen, Y. Jiang, and C. Lu, 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos., 120, 92589278, doi:10.1002/2015JD023404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment-Microphysics Scheme Class 6 (WSM6). J. Korean Meteor. Soc., 42, 362363.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2017: Real-Time TRMM Multi-Satellite Precipitation Analysis data set documentation. Accessed 11 May 2017. [Available online at https://pmm.nasa.gov/sites/default/files/document_files/3B4XRT_doc_V7_4_19_17.pdf.]

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Z. Ding, H. Drange, and Y. Gao, 2008: Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the mid-Pliocene boundary conditions. Adv. Atmos. Sci., 25, 709722, doi:10.1007/s00376-008-0709-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian Oscillation. J. Climate, 13, 35763587, doi:10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30, 1900, doi:10.1029/2003GL018052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and J. M. Slingo, 2005: Weak land–atmosphere coupling strength in HadAM3: The role of soil moisture variability. J. Hydrometeor., 6, 670680, doi:10.1175/JHM445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I. S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, doi:10.1007/s00382-008-0482-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Zhang, C. P. Chang, and B. Wang, 2001: On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys. Res. Lett., 28, 28432846, doi:10.1029/2000GL011847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Y. Luo, and Z. Guan, 2014: The persistent heavy rainfall over southern China in June 2010: Evolution of synoptic systems and the effects of the Tibetan Plateau heating. J. Meteor. Res., 28, 540560, doi:10.1007/s13351-014-3284-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River Basin. J. Geophys. Res., 113, D22101, doi:10.1029/2008JD010072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 223245, doi:10.1016/S0031-0182(01)00488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, J. Hong, B. Dong, A. Duan, Q. Bao, and L. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, doi:10.1007/s00382-012-1335-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., Z. Sun, and G. Wu, 2010: 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dyn., 34, 747761, doi:10.1007/s00382-009-0628-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., 1982: The sensitivity of numerically simulated climates to land surface conditions. Land Surface Processes in Atmospheric General Circulation Models, P. S. Eagleson, Ed., Cambridge University Press, 109–111.

  • Mooney, C. Z., and R. D. Duval, 1993: Bootstrapping: A Nonparametric Approach to Statistical Inference (Quantitative Applications in the Social Sciences). SAGE Publications, Inc., 80 pp.

  • NOAA/NWS/NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 30 May 2015. [Available online at http://rda.ucar.edu/datasets/ds083.2/.]

  • NCEP Climate Prediction Center and UCAR Joint Office for Science Support, 2000: NCEP/CPC Four-Kilometer Precipitation Set, Gauge, and Radar (updated quarterly). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 20 October 2016. [Available online at https://rda.ucar.edu/datasets/ds507.5/.]

  • Niu, G. Y., and Z. L. Yang, 2004: Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res., 109, D23111, doi:10.1029/2004JD004884.

    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local‐scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, W., J. Mao, and G. Wu, 2013: Characteristics and mechanism of the 10–20-day oscillation of spring rainfall over southern China. J. Climate, 26, 50725087, doi:10.1175/JCLI-D-12-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 17861802, doi:10.1175/1520-0493(1996)124<1786:IOMPSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X. J., X. Q. Yang, and X. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 89298946, doi:10.1175/JCLI-D-12-00861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Stéfanon, M., P. Drobinski, F. D’Andrea, C. Lebeaupin-Brossier, and S. Bastin, 2014: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Climate Dyn., 42, 13091324, doi:10.1007/s00382-013-1794-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, doi:10.1175/MWR2839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325, doi:10.1175/2010WAF2222426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large scale circulation. Geophys. Res. Lett., 32, L17708, doi:10.1029/2005GL023769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, and G. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Climate Dyn., 42, 28852898, doi:10.1007/s00382-013-1800-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmosphere Sciences. Vol. 100, 2nd ed. Elsevier, 648 pp.

  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., W. Li, H. Guo, and H. Liu, 1997: Sensible heating-drive air pump of the Tibetan Plateau and the Asian summer monsoon. Memorial Volume of Prof. J.Z. Zhao, Y. Duzheng, Ed., Science Press, Beijing, 116–126.

  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. F. Jin, 2012a: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

  • Wu, G., Y. Liu, B. Dong, X. Liang, A. Duan, Q. Bao, and J. Yu, 2012b: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 11691181, doi:10.1007/s00382-012-1334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. W. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, doi:10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z. Q., K. Fan, and H. J. Wang, 2015: Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Climate, 28, 40864106, doi:10.1175/JCLI-D-14-00464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351, doi:10.2151/jmsj1965.70.1B_319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z. L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah‐MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D., and G. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, doi:10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., B. Wang, and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, doi:10.1029/2004GL021270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., F. Chen, and Y. Gan, 2016: Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos., 121, 95769596, doi:10.1002/2016JD024928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhisheng, A., J. E. Kutzbach, W. L. Prell, and S. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411, 6266, doi:10.1038/35075035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z., S. Yang, R. Zhang, P. Jiang, L. Zhang, and F. Wang, 2013: Long-term variations of broad-scale Asian summer monsoon circulation and possible causes. J. Climate, 26, 89478961, doi:10.1175/JCLI-D-12-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4955 3510 70
PDF Downloads 1162 161 15