Evaluating CFSv2 Subseasonal Forecast Skill with an Emphasis on Tropical Convection

Nicholas J. Weber Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Nicholas J. Weber in
Current site
Google Scholar
PubMed
Close
and
Clifford F. Mass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford F. Mass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the subseasonal predictive skill of CFSv2, focusing on the spatial and temporal distributions of error for large-scale atmospheric variables and the realism of simulated tropical convection. Errors in a 4-member CFSv2 ensemble forecast saturate at lead times of approximately 3 weeks for 500-hPa geopotential height and 5 weeks for 200-hPa velocity potential. Forecast errors exceed those of climatology at lead times beyond 2 weeks. Sea surface temperature, which evolves more slowly than atmospheric fields, maintains skill over climatology through the first month. Spatial patterns of error are robust across lead times and temporal averaging periods, increasing in amplitude as lead time increases and temporal averaging period decreases. Several significant biases were found in the CFSv2 reforecasts, such as too little convection over tropical land and excessive convection over the ocean. The realism of simulated tropical convection and associated teleconnections degrades with forecast lead time. Large-scale tropical convection in CFSv2 is more stationary than observed. Forecast MJOs propagate eastward too slowly and those initiated over the Indian Ocean have trouble traversing beyond the Maritime Continent. The total variability of simulated propagating convection is concentrated at lower frequencies compared to observed convection, and is more fully described by a red spectrum, indicating weak representation of convectively coupled waves. These flaws in simulated tropical convection, which could be tied to problems with convective parameterization and associated mean state biases, affect atmospheric teleconnections and may degrade extended global forecast skill.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas J. Weber, njweber2@atmos.washington.edu

Abstract

This study examines the subseasonal predictive skill of CFSv2, focusing on the spatial and temporal distributions of error for large-scale atmospheric variables and the realism of simulated tropical convection. Errors in a 4-member CFSv2 ensemble forecast saturate at lead times of approximately 3 weeks for 500-hPa geopotential height and 5 weeks for 200-hPa velocity potential. Forecast errors exceed those of climatology at lead times beyond 2 weeks. Sea surface temperature, which evolves more slowly than atmospheric fields, maintains skill over climatology through the first month. Spatial patterns of error are robust across lead times and temporal averaging periods, increasing in amplitude as lead time increases and temporal averaging period decreases. Several significant biases were found in the CFSv2 reforecasts, such as too little convection over tropical land and excessive convection over the ocean. The realism of simulated tropical convection and associated teleconnections degrades with forecast lead time. Large-scale tropical convection in CFSv2 is more stationary than observed. Forecast MJOs propagate eastward too slowly and those initiated over the Indian Ocean have trouble traversing beyond the Maritime Continent. The total variability of simulated propagating convection is concentrated at lower frequencies compared to observed convection, and is more fully described by a red spectrum, indicating weak representation of convectively coupled waves. These flaws in simulated tropical convection, which could be tied to problems with convective parameterization and associated mean state biases, affect atmospheric teleconnections and may degrade extended global forecast skill.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas J. Weber, njweber2@atmos.washington.edu
Save
  • Abhik, S., R. P. M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia, 2017: Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. J. Adv. Model. Earth Syst., 9, 10021029, doi:10.1002/2016MS000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, doi:10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., H. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, doi:10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107, 4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, D. L. Witter, and J. G. Richman, 1990: Geosat altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res., 95, 17 87717 904, doi:10.1029/JC095iC10p17877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 1999: Two kinds of predictability in the Lorenz system. J. Atmos. Sci., 56, 14271432, doi:10.1175/1520-0469(1999)056<1427:TKOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, doi:10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91112, doi:10.1175/JCLI3991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., R. P. James, and J. D. Ross, 2013: Calibration and combination of dynamical seasonal forecasts to enhance the value of predicted probabilities for managing risk. Climate Dyn., 40, 30893105, doi:10.1007/s00382-013-1764-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Wang, and S. Weaver, 2013: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazra, A., H. Chaudhari, and A. Dhakate, 2016: Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon. Theor. Appl. Climatol., 124, 3141, doi:10.1007/s00704-015-1404-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, doi:10.1175/2008JAS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, doi:10.1002/qj.1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. Hakim, Eds., 2012: Numerical modeling and prediction. An Introduction to Dynamic Meteorology, 5th ed. Academic Press, 453–490.

    • Crossref
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian Oscillation in a coupled general circulation model. I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364, doi:10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., M. Satoh, H. Miura, and B. Mapes, 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86A, 115, doi:10.2151/jmsj.86A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., A. Hazra, and L. M. V. Carvalho, 2015: The Madden–Julian Oscillation and boreal winter forecast skill: An analysis of NCEP CFSv2 reforecasts. J. Climate, 28, 62976307, doi:10.1175/JCLI-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., D. Kim, F. Vitart, V. E. Toma, J. Kug, and P. J. Webster, 2016: MJO propagation across the Maritime Continent in the ECMWF Ensemble Prediction System. J. Climate, 29, 39733988, doi:10.1175/JCLI-D-15-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and W. Wang, 2011: An analysis of prediction skill of monthly mean climate variability. Climate Dyn., 37, 11191131, doi:10.1007/s00382-010-0901-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, Y., and Coauthors, 2014: Evaluating skill of seasonal precipitation and temperature predictions of NCEP CFSv2 forecasts over 17 hydroclimatic regions of China. J. Hydrometeor., 15, 15461559, doi:10.1175/JHM-D-13-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., L. Luo, E. F. Wood, and J. Schaake, 2009: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res., 114, D04114, doi:10.1029/2008JD010969.

    • Search Google Scholar
    • Export Citation
  • Li, S., and A. W. Robertson, 2015: Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Wea. Rev., 143, 28712889, doi:10.1175/MWR-D-14-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., J. X. L. Wang, X.-Z. Liang, and V. Morris, 2016: A hybrid approach to improving the skills of seasonal climate outlook at the regional scale. Climate Dyn., 46, 483494, doi:10.1007/s00382-015-2594-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climate predictability. The Physical Basis of Climate and Climate Modelling, GARP Publication Series, Vol. 16, World Meteorological Organization, 133–136.

  • Lynch, K. J., D. J. Brayshaw, and A. Charlton-Perez, 2014: Verification of European subseasonal wind speed forecasts. Mon. Wea. Rev., 142, 29782990, doi:10.1175/MWR-D-13-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G., N. P. Klingaman, and A. F. Moise, 2017: Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6. Geosci. Model Dev., 10, 105126, doi:10.5194/gmd-10-105-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. Noda, and K. Oouchi, 2007: A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., and Coauthors, 2014: Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Commun., 5, 3769, doi:10.1038/ncomms4769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., S. Shukla, D. P. Lettenmaier, and L.-C. Chen, 2012: Do Climate Forecast System (CFSv2) forecasts improve seasonal soil moisture prediction? Geophys. Res. Lett., 39, L23703, doi:10.1029/2012GL053598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., R. Phani Murali Krishna, B. B. Goswami, S. Abhik, M. Ganai, M. Mahakur, M. Khairoutdinov, and J. Dudhia, 2016: Improvements of systematic bias of mean state and the intraseasonal variability of CFSv2 through superparameterization and revised cloud-convection-radiation parameterization. Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, T. N. Krishnamurti and M. N. Rajeevan, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9882), 98820Z, doi:10.1117/12.2222982.

    • Crossref
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, R., C. Zhang, and J. Dudhia, 2016: Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. J. Geophys. Res. Atmos., 121, 10 57510 600, doi:10.1002/2015JD024697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, doi:10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian Oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

  • Roundy, J. K., X. Yuan, J. Schaake, and E. F. Wood, 2015: A framework for diagnosing seasonal prediction through canonical event analysis. Mon. Wea. Rev., 143, 24042418, doi:10.1175/MWR-D-14-00190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W. Wang, J. Gottschalck, Q. Zhang, J. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, G., L. Dutra, R. Rocha, T. Ambrizzi, and E. Leiva, 2014: Preliminary analysis on the global features of the NCEP CFSv2 seasonal hindcasts. Adv. Meteor., 2014, 695067, doi:10.1155/2014/695067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, doi:10.1175/JAS-D-12-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779, doi:10.1175/MWR2826.1.

  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, doi:10.1002/qj.2256.

  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799, doi:10.1002/qj.322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanders, N., and E. F. Wood, 2016: Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations. Environ. Res. Lett., 11, 094007, doi:10.1088/1748-9326/11/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, doi:10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585, doi:10.1175/MWR3308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and Coauthors, 2012: Statistical downscaling of climate forecast system seasonal predictions for the Southeastern Mediterranean. Atmos. Res., 118, 346356, doi:10.1016/j.atmosres.2012.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., and X.-Z. Liang, 2011: Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys. Res. Lett., 38, L02706, doi:10.1029/2010GL046104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., and C. S. Frederiksen, 2007: Statistical prediction of seasonal mean Southern Hemisphere 500-hPa geopotential heights. J. Climate, 20, 27912809, doi:10.1175/JCLI4180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, H., M. C. Wheeler, A. H. Sobel, and D. Hudson, 2014: Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Wea. Rev., 142, 15561569, doi:10.1175/MWR-D-13-00222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1475 844 62
PDF Downloads 533 70 6