• Abraham, J., J. W. Strapp, C. Fogarty, and M. Wolde, 2004: Extratropical transition of Hurricane Michael: An aircraft investigation. Bull. Amer. Meteor. Soc., 85, 13231339, https://doi.org/10.1175/BAMS-85-9-1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, https://doi.org/10.1256/qj.02.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573, https://doi.org/10.1175/MWR2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, https://doi.org/10.1175/2008MWR2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, J. M., J. L. Evans, and F. Chiaromonte, 2004: Characterization of extratropical transition using cluster analysis. Mon. Wea. Rev., 132, 29162937, https://doi.org/10.1175/MWR2836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J., 2006: Tropical cyclone report: Tropical Storm Delta. NHC Rep. AL292005, National Hurricane Center, 12 pp., https://www.nhc.noaa.gov/data/tcr/AL292005_Delta.pdf.

  • Blake, E. S., 2016: Tropical cyclone report: Hurricane Alex. NHC Rep. AL012016, National Hurricane Center, 14 pp., https://www.nhc.noaa.gov/data/tcr/AL012016_Alex.pdf.

  • Bosart, L. F., 1999: Observed cyclone life cycles. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Gronas, Eds., Amer. Meteor. Soc., 187–213, https://doi.org/10.1007/978-1-935704-09-6_15.

    • Crossref
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, https://doi.org/10.1256/qj.02.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., P. Panagi, and G. Vaughan, 1998: Analysis of an ex-tropical cyclone after its reintensification as a warm-core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124, 23292356, https://doi.org/10.1002/qj.49712455108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smith, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., E. Madonna, H. Joos, I. Rudeva, and I. Simmonds, 2015: Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation. J. Climate, 28, 84118429, https://doi.org/10.1175/JCLI-D-15-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., M. Simoes Reboita, and R. Porfirio de Rocha, 2013: Synoptic and dynamical aspects of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos., 118, 10 87010 883, https://doi.org/10.1002/jgrd.50830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110, 385411, https://doi.org/10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: IFS documentation—CY41r1, operational implementation 12 May 2015, Part V: Ensemble prediction system. ECMWF, 25 pp., https://www.ecmwf.int/sites/default/files/elibrary/2015/9212-part-v-ensemble-prediction-system.pdf.

  • ECMWF, 2017: TIGGE data retrieval. ECMWF, accessed 1 February 2017, http://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/.

  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, https://doi.org/10.1175/2009MWR2468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. J. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, https://doi.org/10.1175/JCLI-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., J. M. Arnott, and F. Chiaromonte, 2006: Evaluation of operational model cyclone structure forecasts during extratropical transition. Mon. Wea. Rev., 134, 30543072, https://doi.org/10.1175/MWR3236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2006: Tropical cyclone report: Hurricane Vince, 8–11 October 2005. National Hurricane Center, 9 pp., https://www.nhc.noaa.gov/data/tcr/AL242005_Vince.pdf.

  • Gaffney, S. J., A. W. Robertson, P. Smith, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, https://doi.org/10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, https://doi.org/10.1175/MWR-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Alemán, J. J., F. Valero, F. Martín-León, and J. L. Evans, 2015: Classification and synoptic analysis of subtropical cyclones within the northeastern Atlantic Ocean. J. Climate, 28, 33313352, https://doi.org/10.1175/JCLI-D-14-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper tropospheric waveguide: A North Atlantic case study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, https://doi.org/10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2016: Cyclone phase evolution: Analyses and forecasts. Accessed December 2016, http://moe.met.fsu.edu/cyclonephase/.

  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578, https://doi.org/10.1175/MWR3082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, https://doi.org/10.1175/2009MWR2802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, https://doi.org/10.1029/2011GL047275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 27512771, https://doi.org/10.1175/MWR-D-13-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2008: Extratropical transition of tropical cyclones in the western North Pacific: Their frontal evolution. Mon. Wea. Rev., 136, 20662090, https://doi.org/10.1175/2007MWR1958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. Martin, 2007: The role of dynamic and diabatic processes in the generation of cut-off lows over Northwest Africa. Meteor. Atmos. Phys., 96, 319, https://doi.org/10.1007/s00703-006-0217-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowaleski, A. M., and J. L. Evans, 2016: Regression mixture model clustering of multimodel ensemble forecasts of Hurricane Sandy: Partition characteristics. Mon. Wea. Rev., 144, 38253846, https://doi.org/10.1175/MWR-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuruppumullage Don, P., J. L. Evans, F. Chiaromonte, and A. M. Kowaleski, 2016: Mixture-based path clustering for synthesis of ECMWF ensemble forecasts of tropical cyclone evolution. Mon. Wea. Rev., 144, 33013320, https://doi.org/10.1175/MWR-D-15-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.

  • Matano, H., and M. Sekioka, 1971: Some aspects of extratropical transformation of a tropical cyclone. J. Meteor. Soc. Japan, 49, 736743, https://doi.org/10.2151/jmsj1965.49A.0_736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2001: Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions: Hurricane Earl case study. Mon. Wea. Rev., 129, 16171636, https://doi.org/10.1175/1520-0493(2001)129<1617:STOETU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., and F. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 3858, https://doi.org/10.1002/2013MS000297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J.-P. Chaboureau, C. Lac, and P. Mascart, 2013: On the role of a Rossby wave train during the extratropical transition of hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386, https://doi.org/10.1002/qj.1974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., I. Simmonds, and A. J. Pereira Filho, 2009: Climate perspective on the large-scale circulation associated with the transition of the first South Atlantic hurricane. Int. J. Climatol., 29, 11161130, https://doi.org/10.1002/joc.1757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D., and J. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high‐amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, https://doi.org/10.1002/qj.2221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, https://doi.org/10.1002/qj.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2003: Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to reintensification. Mon. Wea. Rev., 131, 21122128, https://doi.org/10.1175/1520-0493(2003)131<2112:SOTETO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135, 862876, https://doi.org/10.1175/MWR3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791, https://doi.org/10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. A. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

    • Crossref
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, https://doi.org/10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., M. A. Gaertner, R. Romera, and M. Castro, 2007: A multisource analysis of Hurricane Vince. Bull. Amer. Meteor. Soc., 88, 10271032, https://doi.org/10.1175/BAMS-88-7-1027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and S. C. Jones, 2000: The extratropical transitions of Hurricanes Felix and Iris in 1995. Mon. Wea. Rev., 128, 947972, https://doi.org/10.1175/1520-0493(2000)128<0947:TETOHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts. J. Atmos. Sci., 67, 817833, https://doi.org/10.1175/2009JAS3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, https://doi.org/10.1175/MWR-D-14-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. Part II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, https://doi.org/10.1002/qj.49712354211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the Winter Storm “Lothar” (24-26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, https://doi.org/10.1256/003590002321042036.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 11 11 11

Use of Ensemble Forecasts to Investigate Synoptic Influences on the Structural Evolution and Predictability of Hurricane Alex (2016) in the Midlatitudes

View More View Less
  • 1 Environmental Sciences Institute, University of Castilla-La Mancha, Toledo, Spain
  • | 2 Department of Meteorology and Atmospheric Science, and Institute for CyberScience, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

Hurricane Alex was an extremely rare hurricane event, the first North Atlantic hurricane to form in January since 1938. Alex developed from an extratropical low pressure system that formed over the western North Atlantic basin, and then underwent tropical transition after moving to the eastern basin. It subsequently underwent anomalous extratropical transition (ET) just north of the Azores Islands. We examine the factors affecting Alex’s structural evolution and the predictability of that evolution. Potential scenarios of structural development are identified from a 51-member forecast ensemble from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS), initialized at 0000 UTC 10 January 2016. The EPS forecasts are clustered using a regression mixture model based on the storm’s path through the cyclone phase space. Composite maps constructed from these clusters are used to investigate the role of synoptic-scale features on the evolving structure of Hurricane Alex as it interacted with the midlatitude flow. Results suggest that the crucial factor affecting this interplay was the behavior of a large extratropical cyclone and its associated cold front and likely warm conveyor belt upstream of Alex; the intensity of these structures determined whether Alex underwent a typical cold-core ET (as observed) or a warm-seclusion ET. The clustering and compositing methodology proposed not only provides a nuanced analysis of the ensemble forecast variability, helping forecasters to analyze the predictability of future complex tropical–midlatitude interactions, but also presents a method to investigate probable causes of different processes occurring in cyclones.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0015.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Jesús González-Alemán, juanjesus.gonzalez@uclm.es

Abstract

Hurricane Alex was an extremely rare hurricane event, the first North Atlantic hurricane to form in January since 1938. Alex developed from an extratropical low pressure system that formed over the western North Atlantic basin, and then underwent tropical transition after moving to the eastern basin. It subsequently underwent anomalous extratropical transition (ET) just north of the Azores Islands. We examine the factors affecting Alex’s structural evolution and the predictability of that evolution. Potential scenarios of structural development are identified from a 51-member forecast ensemble from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS), initialized at 0000 UTC 10 January 2016. The EPS forecasts are clustered using a regression mixture model based on the storm’s path through the cyclone phase space. Composite maps constructed from these clusters are used to investigate the role of synoptic-scale features on the evolving structure of Hurricane Alex as it interacted with the midlatitude flow. Results suggest that the crucial factor affecting this interplay was the behavior of a large extratropical cyclone and its associated cold front and likely warm conveyor belt upstream of Alex; the intensity of these structures determined whether Alex underwent a typical cold-core ET (as observed) or a warm-seclusion ET. The clustering and compositing methodology proposed not only provides a nuanced analysis of the ensemble forecast variability, helping forecasters to analyze the predictability of future complex tropical–midlatitude interactions, but also presents a method to investigate probable causes of different processes occurring in cyclones.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0015.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Jesús González-Alemán, juanjesus.gonzalez@uclm.es

Supplementary Materials

    • Supplemental Materials (PDF 3.68 MB)
Save