• Baggett, C., E. Barnes, E. Maloney, and B. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. Michelson, P. Neiman, F. Ralph, and J. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H., P. Clark, O. Martinez-Alvarado, M. Stringer, and D. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, https://doi.org/10.1007/s003820050230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2016: Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Climate, 29, 88238840, https://doi.org/10.1175/JCLI-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M., D. Waliser, B. Guan, D. Lavers, F. Ralph, and F. Vitart, 2018a: Global assessment of atmospheric river prediction skill. J. Hydrometeor., 19, 409426, https://doi.org/10.1175/JHM-D-17-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M., D. Waliser, B. Guan, F. Ralph, and F. Vitart, 2018b: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., https://doi.org/10.1007/s00382-018-4309-x, in press.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., F. Ralph, T. Das, P. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. Molotch, D. Waliser, E. Fetzer, and P. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., J. Whitaker, and S. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, https://doi.org/10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatchett, B., S. Burak, J. Rutz, N. Oakley, E. Bair, and M. Kaplan, 2017: Avalanche fatalities during atmospheric river events in the western United States. J. Hydrometeor., 18, 13591374, https://doi.org/10.1175/JHM-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, C., and J. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over north coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, D., M. Hughes, and G. Wick, 2016: Evaluation of landfalling atmospheric rivers along the U.S. West Coast in reanalysis data sets. J. Geophys. Res. Atmos., 121, 27052718, https://doi.org/10.1002/2015JD024412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jie, W., F. Vitart, T. Wu, and X. Liu, 2017: Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction (S2S) database. Quart. J. Roy. Meteor. Soc., 143, 22822295, https://doi.org/10.1002/qj.3085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., and D. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 1st ed. John Wiley and Sons, 254 pp.

  • Lavers, D., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D., G. Villarini, R. Allan, E. Wood, and A. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D., F. Ralph, P. Neiman, G. Wick, C. Scott, D. McCollor, and T. White, 2014: Atmospheric rivers in southeast Alaska and British Columbia: The Bella Coola event of 2010 and Alaska events of 2012. 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A53K-3353.

  • Matsueda, M., M. Kyouda, Z. Toth, H. Tanaka, and T. Tsuyuki, 2011: Predictability of an atmospheric blocking event that occurred on 15 December 2005. Mon. Wea. Rev., 139, 24552470, https://doi.org/10.1175/2010MWR3551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B., E. Barnes, and E. Maloney, 2016a: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B., E. Barnes, E. Maloney, and K. Nardi, 2016b: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by Northeast Pacific height anomalies. J. Geophys. Res., 121, 12 75112 765, https://doi.org/10.1002/2016JD025350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B., E. Barnes, E. Maloney, and C. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden-Julian oscillation and quasi-biennial oscillation. Nature Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, M., G. Villarini, and D. Lavers, 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett., 41, 43544362, https://doi.org/10.1002/2014GL060299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P., F. Ralph, A. White, D. Kingsmill, and P. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P., F. Ralph, and G. Wick, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P., L. Schick, F. Ralph, M. Hughes, and G. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., F. Doblas-Reyes, A. Weisheimer, and M. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, https://doi.org/10.1175/BAMS-89-4-459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., and M. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., and T. Galarneau, 2017: The Chiricahua Gap and the role of easterly water vapor transport in southeastern Arizona monsoon precipitation. J. Hydrometeor., 18, 25112520, https://doi.org/10.1175/JHM-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., P. Neiman, and G. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., P. Neiman, G. Wick, S. Gutman, M. Dettinger, D. Cayan, and A. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, https://doi.org/10.1175/2010JHM1232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., T. Coleman, P. Neiman, R. Zamora, and M. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., J. Rutz, J. Cordeira, M. Dettinger, M. Anderson, L. Schick, C. Smallcomb, and D. Reynolds, 2017a: A scale to characterize the strength and impacts of atmospheric rivers. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract H23F-1749.

  • Ralph, F., and Coauthors, 2017b: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivera, E., F. Dominguez, and C. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River Basin of Arizona. J. Hydrometeor., 15, 813829, https://doi.org/10.1175/JHM-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J., and W. Steenburgh, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiraldi, N., and P. Roundy, 2017: Seasonal-to-subseasonal model forecast performance during agricultural drought transition periods in the U.S. Corn Belt. Mon. Wea. Rev., 145, 36873708, https://doi.org/10.1175/MWR-D-17-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden-Julian Oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. Nature Climate Atmos. Sci., 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The subseasonal to seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163176, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nature, 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Search Google Scholar
    • Export Citation
  • Wick, G., P. Neiman, F. Ralph, and T. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier Academic Press, 648 pp.

  • Zhou, Y., and H. Kim, 2018: Prediction of atmospheric rivers over the North Pacific and its connection to ENSO in the North American multi-model ensemble (NMME). Climate Dyn., 51, 16231637, https://doi.org/10.1007/s00382-017-3973-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

  • Zhu, Y., and R. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 8 8 8

Assessment of Numerical Weather Prediction Model Reforecasts of the Occurrence, Intensity, and Location of Atmospheric Rivers along the West Coast of North America

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

Atmospheric rivers (ARs)—narrow corridors of high atmospheric water vapor transport—occur globally and are associated with flooding and maintenance of the water supply. Therefore, it is important to improve forecasts of AR occurrence and characteristics. Although prior work has examined the skill of numerical weather prediction (NWP) models in forecasting atmospheric rivers, these studies only cover several years of reforecasts from a handful of models. Here, we expand this previous work and assess the performance of 10–30 years of wintertime (November–February) AR landfall reforecasts from the control runs of nine operational weather models, obtained from the International Subseasonal to Seasonal (S2S) Project database. Model errors along the west coast of North America at leads of 1–14 days are examined in terms of AR occurrence, intensity, and landfall location. Occurrence-based skill approaches that of climatology at 14 days, while models are, on average, more skillful at shorter leads in California, Oregon, and Washington compared to British Columbia and Alaska. We also find that the average magnitude of landfall integrated water vapor transport (IVT) error stays fairly constant across lead times, although overprediction of IVT is common at later lead times. Finally, we show that northward landfall location errors are favored in California, Oregon, and Washington, although southward errors occur more often than expected from climatology. These results highlight the need for model improvements, while helping to identify factors that cause model errors.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0060.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle M. Nardi, knardi@rams.colostate.edu

Abstract

Atmospheric rivers (ARs)—narrow corridors of high atmospheric water vapor transport—occur globally and are associated with flooding and maintenance of the water supply. Therefore, it is important to improve forecasts of AR occurrence and characteristics. Although prior work has examined the skill of numerical weather prediction (NWP) models in forecasting atmospheric rivers, these studies only cover several years of reforecasts from a handful of models. Here, we expand this previous work and assess the performance of 10–30 years of wintertime (November–February) AR landfall reforecasts from the control runs of nine operational weather models, obtained from the International Subseasonal to Seasonal (S2S) Project database. Model errors along the west coast of North America at leads of 1–14 days are examined in terms of AR occurrence, intensity, and landfall location. Occurrence-based skill approaches that of climatology at 14 days, while models are, on average, more skillful at shorter leads in California, Oregon, and Washington compared to British Columbia and Alaska. We also find that the average magnitude of landfall integrated water vapor transport (IVT) error stays fairly constant across lead times, although overprediction of IVT is common at later lead times. Finally, we show that northward landfall location errors are favored in California, Oregon, and Washington, although southward errors occur more often than expected from climatology. These results highlight the need for model improvements, while helping to identify factors that cause model errors.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0060.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle M. Nardi, knardi@rams.colostate.edu

Supplementary Materials

    • Supplemental Materials (PDF 17.79 MB)
Save