• Aksoy, A., D. C. Dowell, and C. A. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9, 15181530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144, 31593180, https://doi.org/10.1175/MWR-D-15-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1996: Random and systematic error in NMC’s short-range Eta ensembles. Preprints, 13th Conf. on Probability and Statistics in the Atmospheric Sciences, San Francisco, CA, Amer. Meteor. Soc., 51–56.

  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, https://doi.org/10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—version 1. NOAA Tech. Rep. NESDIS 122, 40 pp.

  • Harrison, M. S. J., D. S. Richardson, K. Robertson, and A. Woodcock, 1995: Medium-range ensembles using both the ECMWF T63 and unified models—An initial report. UKMO Tech. Rep. 153, 25 pp.

  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471499, https://doi.org/10.1175/MWR-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A., C. O’Dell, R. Bennartz, and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402, https://doi.org/10.1175/JAM2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., and T. Kawano, 2016: A possible mechanism of tornadogenesis associated with the interaction between a supercell and an outflow boundary without horizontal shear. J. Atmos. Sci., 73, 12731292, https://doi.org/10.1175/JAS-D-14-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., and Coauthors, 2018a: Assimilating all-sky Himawari-8 infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213229, https://doi.org/10.1175/MWR-D-16-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018b: Assimilation of Himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res. Atmos., 123, 965976, https://doi.org/10.1002/2017JD027096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 20522081, https://doi.org/10.1175/MWR-D-14-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season observing system simulation experiment. Mon. Wea. Rev., 141, 32733299, https://doi.org/10.1175/MWR-D-12-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2014: Forecast evaluation of an observing system simulation experiment assimilating both radar and satellite data. Mon. Wea. Rev., 142, 107124, https://doi.org/10.1175/MWR-D-13-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. Stensrud, L. Wicker, P. Minnis, and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, https://doi.org/10.1175/MWR-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., S. Koch, and Z. Li, 2017: Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to improve severe weather forecasts. Atmos. Res., 186, 925, https://doi.org/10.1016/j.atmosres.2016.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., D. J. Stensrud, and X. Wang, 2015: Assimilation of cloud-top temperature and radar observations of an idealized splitting supercell using an observing system simulation experiment. Mon. Wea. Rev., 143, 10181034, https://doi.org/10.1175/MWR-D-14-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540, https://doi.org/10.1175/2007MWR2106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 36713682, https://doi.org/10.1175/2008MWR2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2018a: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 32413258, https://doi.org/10.1175/MWR-D-17-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2018: Billion-dollar weather and climate disasters: Summary stats. NOAA/National Centers for Environmental Information, accessed January 2018, https://www.ncdc.noaa.gov/billions/summary-stats.

  • Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, https://doi.org/10.1029/2009JD013759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2012: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res., 117, D19203, https://doi.org/10.1029/2012JD017568.

    • Search Google Scholar
    • Export Citation
  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. R. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, https://doi.org/10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges of Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., A. Rodriguez, S. Tjemkes, J. Grandell, A. Arriaga, J.-L. Bézy, D. Aminou, and P. Bensi, 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme. Adv. Space Res., 36, 975981, https://doi.org/10.1016/j.asr.2005.03.091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Shinfield Park, Reading, United Kingdom, ECMWF, 1–25.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wurman, J. M., Y. P. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J. M., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. Zhang, C. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 16371658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and H. Niino, 2016: The tornadic supercell on the Kanto Plain on 6 May 2012: Polarimetric radar and surface data assimilation with EnKF and ensemble-based sensitivity analysis. Mon. Wea. Rev., 144, 31333157, https://doi.org/10.1175/MWR-D-15-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiance from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 29542963, https://doi.org/10.1002/2016GL068468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., F. Zhang, X.-Y. Huang, and X. Zhang, 2011: Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566572, https://doi.org/10.1175/2010MWR3610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 12731298, https://doi.org/10.1175/MWR-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., M. Zupanski, L. D. Grasso, R. Brummer, I. Jankov, D. Lindsey, M. Sengupta, and M. Demaria, 2011: Assimilating synthetic GOES-R radiances in cloudy conditions using an ensemble-based method. Int. J. Remote Sens., 32, 96379659, https://doi.org/10.1080/01431161.2011.572094.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 31
PDF Downloads 23 23 23

Assimilating All-Sky Infrared Radiances from GOES-16 ABI Using an Ensemble Kalman Filter for Convection-Allowing Severe Thunderstorms Prediction

View More View Less
  • 1 Center for Advanced Data Assimilation and Predictability Techniques, and Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

This article presents the first practice of assimilating real-world all-sky GOES-16 ABI infrared brightness temperature (BT) observations using an ensemble-based data assimilation system coupled with the Weather Research and Forecasting (WRF) Model at a convection-allowing (1 km) horizontal resolution, focusing on the tornadic thunderstorm event across Wyoming and Nebraska on 12 June 2017. It is found that spurious clouds created before observed convection initiation are rapidly removed, and the analysis and forecasts of thunderstorms are significantly improved, when all-sky BT observations are assimilated with the adaptive observation error inflation (AOEI) and adaptive background error inflation (ABEI) techniques. Better forecasts of the timing and location of convection initiation can be achieved after only 30 min of assimilating BT observations; both deterministic and probabilistic WRF forecasts of midlevel mesocyclones and low-level vortices, started from the final analysis with 100 min of BT assimilation, closely coincide with the tornado reports. These improvements result not only from the effective suppression of spurious clouds, but also from the better estimations of hydrometeors owing to the frequent assimilation of all-sky BT observations that yield a more accurate analysis of the storm. Results show that BT observations generally have a greater impact on ice particles than liquid water species, which might provide guidance on how to better constrain modeled clouds using these spaceborne observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fuqing Zhang, fzhang@psu.edu

Abstract

This article presents the first practice of assimilating real-world all-sky GOES-16 ABI infrared brightness temperature (BT) observations using an ensemble-based data assimilation system coupled with the Weather Research and Forecasting (WRF) Model at a convection-allowing (1 km) horizontal resolution, focusing on the tornadic thunderstorm event across Wyoming and Nebraska on 12 June 2017. It is found that spurious clouds created before observed convection initiation are rapidly removed, and the analysis and forecasts of thunderstorms are significantly improved, when all-sky BT observations are assimilated with the adaptive observation error inflation (AOEI) and adaptive background error inflation (ABEI) techniques. Better forecasts of the timing and location of convection initiation can be achieved after only 30 min of assimilating BT observations; both deterministic and probabilistic WRF forecasts of midlevel mesocyclones and low-level vortices, started from the final analysis with 100 min of BT assimilation, closely coincide with the tornado reports. These improvements result not only from the effective suppression of spurious clouds, but also from the better estimations of hydrometeors owing to the frequent assimilation of all-sky BT observations that yield a more accurate analysis of the storm. Results show that BT observations generally have a greater impact on ice particles than liquid water species, which might provide guidance on how to better constrain modeled clouds using these spaceborne observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fuqing Zhang, fzhang@psu.edu
Save