• Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034, https://doi.org/10.1175/2008MWR2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, and E. Brin, 1991: A scheme to incorporate analysis increments gradually in the GLA assimilation system. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 110112.

  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. 1st ed. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Ph.D. thesis, University of Maryland, 163 pp., https://drum.lib.umd.edu/handle/1903/13135.

  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawless, A., 2010: A note on the analysis error associated with 3D-FGAT. Quart. J. Roy. Meteor. Soc., 136, 10941098, https://doi.org/10.1002/qj.619.

  • Lee, M.-S., Y.-H. Kuo, D. M. Barker, and E. Lim, 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 13891404, https://doi.org/10.1175/MWR3129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012, https://doi.org/10.1002/qj.49712657002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, and S. R. Pring, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massart, S. M., B. Pajot, A. Piacentini, and O. Pannekoucke, 2010: On the merits of using a 3D-FGAT assimilation scheme with an outer loop for atmospheric situations governed by transport. Mon. Wea. Rev., 138, 45094522, https://doi.org/10.1175/2010MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., L. D. Oman, S. E. Strahan, D. W. Waugh, S. Pawson, L. L. Takacs, and A. M. Molod, 2017: Large-scale atmospheric transport in GEOS replay simulations. J. Adv. Model. Earth Syst., 9, 25452560, https://doi.org/10.1002/2017MS001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ourmières, Y., J.-M. Brankart, L. Berline, P. Brasseur, and J. Verron, 2006: Incremental analysis update implementation into a sequential ocean data assimilation system. J. Atmos. Oceanic Technol., 23, 17291744, https://doi.org/10.1175/JTECH1947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon. Wea. Rev., 142, 21392149, https://doi.org/10.1175/MWR-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Ren, A. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 24952502, https://doi.org/10.1175/1520-0493(2004)132<2495:OTRBIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., R. D. Rood, and J. Pfaendtner, 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc., 74, 23312342, https://doi.org/10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., and A. El Akkraoui, 2018: The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0. NASA Tech. Memo. NASA/TM-2018-104606-50, NASA Goddard Space Flight Center, 184 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002172.pdf.

  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 27 27 27

The Stability of Incremental Analysis Update

View More View Less
  • 1 Science Systems and Applications, Inc., Lanham, Maryland
  • | 2 University Space Research Association, Columbia, Maryland
  • | 3 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

A recent attempt to downscale the 50-km MERRA-2 analyses to 7 km revealed an instability associated with the incremental analysis update (IAU) procedure that has thus far gone unnoticed. A theoretical study based on a simple damped harmonic oscillator with complex frequency provides the framework to diagnose the problem and suggests means to avoid it. Three possible approaches to avoid the instability are to (i) choose an “ideal” ratio of the lengths of the predictor and corrector steps of IAU based on a theoretical stability diagram, (ii) time average the background fields used to construct the IAU tendencies with given frequency, or (iii) apply a digital filter modulation to the IAU tendencies. All these are shown to control the instability for a wide range of resolutions when doing up- or downscaling, experiments with the NASA GMAO atmospheric general circulation model. Furthermore, it is found that combining IAU with the ensemble recentering step typical of hybrid ensemble–variational approaches also results in an instability based on the same mechanisms in the members of the ensemble. An example of such occurrence arises in an experiment performed with the GMAO 12.8-km hybrid 4D-EnVar system. Modulation of the ensemble IAU tendencies with a digital filter is shown to avoid the instability. In addition, the stability of certain 4D incremental analysis update (4DIAU) implementations is analyzed and a suggestion is made to improve its results, though a complete study of this subject is postponed to a follow-up work.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence L. Takacs, lawrence.l.takacs@nasa.gov

Abstract

A recent attempt to downscale the 50-km MERRA-2 analyses to 7 km revealed an instability associated with the incremental analysis update (IAU) procedure that has thus far gone unnoticed. A theoretical study based on a simple damped harmonic oscillator with complex frequency provides the framework to diagnose the problem and suggests means to avoid it. Three possible approaches to avoid the instability are to (i) choose an “ideal” ratio of the lengths of the predictor and corrector steps of IAU based on a theoretical stability diagram, (ii) time average the background fields used to construct the IAU tendencies with given frequency, or (iii) apply a digital filter modulation to the IAU tendencies. All these are shown to control the instability for a wide range of resolutions when doing up- or downscaling, experiments with the NASA GMAO atmospheric general circulation model. Furthermore, it is found that combining IAU with the ensemble recentering step typical of hybrid ensemble–variational approaches also results in an instability based on the same mechanisms in the members of the ensemble. An example of such occurrence arises in an experiment performed with the GMAO 12.8-km hybrid 4D-EnVar system. Modulation of the ensemble IAU tendencies with a digital filter is shown to avoid the instability. In addition, the stability of certain 4D incremental analysis update (4DIAU) implementations is analyzed and a suggestion is made to improve its results, though a complete study of this subject is postponed to a follow-up work.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence L. Takacs, lawrence.l.takacs@nasa.gov
Save