• Bénard, P., 2003: Stability of semi-implicit and iterative centred-implicit time discretizations for various equation systems used in NWP. Mon. Wea. Rev., 131, 24792491, https://doi.org/10.1175/1520-0493(2003)131<2479:SOSAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., 2004: On the use of a wider class of linear systems for the design of constant-coefficients semi-implicit time schemes in NWP. Mon. Wea. Rev., 132, 13191324, https://doi.org/10.1175/1520-0493(2004)132<1319:OTUOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., Z. Gimbutas, P. Martinsson, and V. Rokhlin, 2005: On the compression of low rank matrices. SIAM J. Sci. Comput., 26, 13891404, https://doi.org/10.1137/030602678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and M. Naughton, 1994: A pole problem in the reduced Gaussian grid. Quart. J. Roy. Meteor. Soc., 120, 13891407, https://doi.org/10.1002/qj.49712051913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, M., and S. C. Eisenstat, 1996: Efficient algorithms for computing a strong rank revealing QR factorization. SIAM J. Sci. Comput., 17, 848869, https://doi.org/10.1137/0917055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortal, M., and A. J. Simmons, 1991: Use of reduced grid in spectral models. Mon. Wea. Rev., 119, 10571074, https://doi.org/10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975, https://doi.org/10.1256/qj.06.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunis, S., and D. Potts, 2003: Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161, 7598, https://doi.org/10.1016/S0377-0427(03)00546-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and H. Yang, 2017: Interpolative butterfly factorization. SIAM J. Sci. Comput., 39, A503A531, https://doi.org/10.1137/16M1074941.

  • Liao, X., L. Xiao, C. Yang, and Y. Lu, 2014: MilkyWay-2 supercomputer: System and application. Front. Comput. Sci., 8, 345356, https://doi.org/10.1007/s11704-014-3501-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinsson, P. G., V. Rokhlin, Y. Shkolnisky, and M. Tygert, 2008: ID: A software package for low-rank approximation of matrices via interpolative decompositions, version 0.2. Accessed 30 July 2015, http://cims.nyu.edu/~tygert/id_doc.pdf.

  • Martinsson, P. G., and M. Tygert, 2013: Multilevel compression of linear operators: Descendants of fast multipole methods and Calderòn-Zygmund theory. Yale University and Courant Institute, 56 pp., http://tygert.com/gradcourse/survey.pdf.

  • Michielssen, E., and A. Boag, 1996: A multilevel matrix decomposition algorithm for analyzing scattering from large structures. IEEE Trans. Antennas Propag., 44, 10861093, https://doi.org/10.1109/8.511816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neil, M., F. Woolfe, and V. Rokhlin, 2010: An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal., 28, 203226, https://doi.org/10.1016/j.acha.2009.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rokhlin, V., and M. Tygert, 2006: Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput., 27, 19031928, https://doi.org/10.1137/050623073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seljebotn, D. S., 2012: Wavemoth—Fast spherical harmonic transforms by butterfly matrix compression. Astrophys. J. Suppl., 199, 537546, https://doi.org/10.1088/0067-0049/199/1/5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suda, R., 2004: Stability analysis of the fast Legendre transform algorithm based on the fast multipole method. Proc. Estonian Acad. Sci. Phys. Math., 53 (53), 107115.

    • Search Google Scholar
    • Export Citation
  • Suda, R., 2005: Fast spherical harmonic transform routine FLTSS applied to the shallow water test set. Mon. Wea. Rev., 133, 634648, https://doi.org/10.1175/MWR-2871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suda, R., and M. Takami, 2002: A fast spherical harmonics transform algorithm. Math. Comput., 71, 703715, https://doi.org/10.1090/S0025-5718-01-01386-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tygert, M., 2010a: Recurrence relations and fast algorithms. Appl. Comput. Harmonic Anal., 28, 121128, https://doi.org/10.1016/j.acha.2009.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tygert, M., 2010b: Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys., 229, 61816192, https://doi.org/10.1016/j.jcp.2010.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wedi, N., M. Hamrud, and G. Mozdzynski, 2013: A fast spherical harmonics transform for global NWP and climate models. Mon. Wea. Rev., 141, 34503461, https://doi.org/10.1175/MWR-D-13-00016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, https://doi.org/10.1016/S0021-9991(05)80016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J. P., J. Zhao, J. Q. Song, and W. M. Zhang, 2011: Preliminary design of dynamic framework for global non-hydrostatic spectral model. Comput. Eng. Design, 32, 35393543.

    • Search Google Scholar
    • Export Citation
  • Yang, J., J. Song, J. Wu, K. J. Ren, and H. Leng, 2015: A high‐order vertical discretization method for a semi‐implicit mass‐based non‐hydrostatic kernel. Quart. J. Roy. Meteor. Soc., 141, 28802885, https://doi.org/10.1002/qj.2573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., J. Song, J. Wu, F. Ying, J. Peng, and H. Leng, 2017: A semi-implicit deep-atmosphere spectral dynamical kernel using a hydrostatic-pressure coordinate. Quart. J. Roy. Meteor. Soc., 143, 27032713, https://doi.org/10.1002/qj.3119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yessad, K., 2018: Spectral transforms in the cycle 46 of ARPECG/IFS. Meteo-France, 26 pp., http://www.umr-cnrm.fr/gmapdoc/IMG/pdf/ykts46.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Performance Evaluation of the Fast Spherical Harmonic Transform Algorithm in the Yin–He Global Spectral Model

View More View Less
  • 1 College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
Restricted access

Abstract

In this paper, we describe an implementation of the fast spherical harmonic transform (SHT) algorithm in the Yin–He global spectral model (YHGSM). A new analysis method is proposed to study the potential instability of interpolative decomposition and to evaluate the performance of fast SHT on the MilkyWay-2 supercomputer. The novel aspect of the proposed method is the use of the computational complexity analysis method by studying the properties of interpolative decompositions. Furthermore, three test cases are conducted to verify fast SHT in YHGSM. The results demonstrate that fast SHT is feasible and efficient for reducing the computational complexity and memory cost of SHT while still keeping enough accuracy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fukang Yin, yinfukang@nudt.edu.cn

Abstract

In this paper, we describe an implementation of the fast spherical harmonic transform (SHT) algorithm in the Yin–He global spectral model (YHGSM). A new analysis method is proposed to study the potential instability of interpolative decomposition and to evaluate the performance of fast SHT on the MilkyWay-2 supercomputer. The novel aspect of the proposed method is the use of the computational complexity analysis method by studying the properties of interpolative decompositions. Furthermore, three test cases are conducted to verify fast SHT in YHGSM. The results demonstrate that fast SHT is feasible and efficient for reducing the computational complexity and memory cost of SHT while still keeping enough accuracy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fukang Yin, yinfukang@nudt.edu.cn
Save