• Bonaventura, L., A. Iske, and E. Miglio, 2011: Kernel-based vector field reconstruction in computational fluid dynamic models. Int. J. Numer. Methods Fluids, 66, 714729, https://doi.org/10.1002/fld.2279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, and G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, https://doi.org/10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Côté, J., J.-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results. Mon. Wea. Rev., 126, 13971418, https://doi.org/10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H., and R. E. Turner, 1977: Updating prediction models by dynamical relaxation: An examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225245, https://doi.org/10.1002/qj.49710343602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., 2014: Lateral boundary conditions for limited area models. Quart. J. Roy. Meteor. Soc., 140, 185196, https://doi.org/10.1002/qj.2127.

  • Davies, T., 2017: Dynamical downscaling and variable resolution in limited-area models. Quart. J. Roy. Meteor. Soc., 143, 209222, https://doi.org/10.1002/qj.2913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Elía, R., R. Laprise, and B. Denis, 2002: Forecasting skill limits of nested, limited-area models: A perfect-model approach. Mon. Wea. Rev., 130, 20062023, https://doi.org/10.1175/1520-0493(2002)130<2006:FSLONL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, https://doi.org/10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., W. C. Skamarock, G. A. Grell, S. R. Freitas, and M. Duda, 2016: Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model. Mon. Wea. Rev., 144, 22852306, https://doi.org/10.1175/MWR-D-15-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83104, https://doi.org/10.1007/s13143-014-0029-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, https://doi.org/10.1175/MWR-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, https://doi.org/10.1175/MWR3440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliger, J., and A. Sundström, 1978: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math., 35, 419446, https://doi.org/10.1137/0135035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF Models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 36143634, https://doi.org/10.1175/MWR-D-14-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, https://doi.org/10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., D. Jacobsen, L. Ju, M. Gunzburger, M. Duda, and W. C. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368, https://doi.org/10.1175/MWR-D-10-05049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea. Rev., 139, 29622975, https://doi.org/10.1175/MWR-D-10-05056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 14 14 14

Limited-Area Atmospheric Modeling Using an Unstructured Mesh

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Yonsei University, Seoul, South Korea
Restricted access

Abstract

A regional configuration of the atmospheric component of the Model for Prediction Across Scales (MPAS-A) is described and evaluated. It employs horizontally unstructured spherical centroidal Voronoi meshes (nominally hexagonal), and lateral boundary conditions used in rectangular grid regional models are adapted to the MPAS-A Voronoi mesh discretization. Test results using a perfect-model assumption show that the lateral boundary conditions are stable and robust. As found in other regional modeling studies, configurations using larger regional domains generally have smaller solution errors compared to configurations employing smaller regional domains. MPAS-A supports variable-resolution meshes, and when regional domains are expanded to include a coarser outer mesh, the variable-resolution configurations recover most of the error reduction compared to a configuration using uniform high resolution, and at much-reduced cost. The wider relaxation-zone region of the variable-resolution mesh also helps reconcile differences near the lateral boundary that evolve between the regional model solution and the driving solution, and the configuration is more stable than one using a uniform high-resolution regional mesh. At convection-permitting resolution, solutions produced using global variable-resolution MPAS-A configurations have smaller solution errors than the regional configurations after about 48 h.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William C. Skamarock, skamaroc@ucar.edu

Abstract

A regional configuration of the atmospheric component of the Model for Prediction Across Scales (MPAS-A) is described and evaluated. It employs horizontally unstructured spherical centroidal Voronoi meshes (nominally hexagonal), and lateral boundary conditions used in rectangular grid regional models are adapted to the MPAS-A Voronoi mesh discretization. Test results using a perfect-model assumption show that the lateral boundary conditions are stable and robust. As found in other regional modeling studies, configurations using larger regional domains generally have smaller solution errors compared to configurations employing smaller regional domains. MPAS-A supports variable-resolution meshes, and when regional domains are expanded to include a coarser outer mesh, the variable-resolution configurations recover most of the error reduction compared to a configuration using uniform high resolution, and at much-reduced cost. The wider relaxation-zone region of the variable-resolution mesh also helps reconcile differences near the lateral boundary that evolve between the regional model solution and the driving solution, and the configuration is more stable than one using a uniform high-resolution regional mesh. At convection-permitting resolution, solutions produced using global variable-resolution MPAS-A configurations have smaller solution errors than the regional configurations after about 48 h.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William C. Skamarock, skamaroc@ucar.edu
Save