An Analog Technique to Improve Storm Wind Speed Prediction Using a Dual NWP Model Approach

Jaemo Yang Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Jaemo Yang in
Current site
Google Scholar
PubMed
Close
,
Marina Astitha Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Marina Astitha in
Current site
Google Scholar
PubMed
Close
,
Luca Delle Monache National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Luca Delle Monache in
Current site
Google Scholar
PubMed
Close
, and
Stefano Alessandrini National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stefano Alessandrini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents a new implementation of the analog ensemble method (AnEn) to improve the prediction of wind speed for 146 storms that have impacted the northeast United States in the period 2005–16. The AnEn approach builds an ensemble by using a set of past observations that correspond to the best analogs of numerical weather prediction (NWP). Unlike previous studies, dual-predictor combinations are used to generate AnEn members, which include wind speed, wind direction, and 2-m temperature, simulated by two state-of-the-science atmospheric models [the Weather Research and Forecasting (WRF) Model and the Regional Atmospheric Modeling System–Integrated Community Limited Area Modeling System (RAMS–ICLAMS)]. Bias correction is also applied to each analog to gain additional benefits in predicting wind speed. Both AnEn and the bias-corrected analog ensemble (BCAnEn) are tested with a weighting strategy, which optimizes the predictor combination with root-mean-square error (RMSE) minimization. A leave-one-out cross validation is implemented, that is, each storm is predicted using the remaining 145 as the training dataset, with modeled and observed values over 80 stations in the northeast United States. The results show improvements of 9%–42% and 1%–29% with respect to original WRF and ICLAMS simulations, as measured by the RMSE of individual storms. Moreover, for two high-impact tropical storms (Irene and Sandy), BCAnEn significantly reduces the error of raw prediction (average RMSE reduction of 22% for Irene and 26% for Sandy). The AnEn and BCAnEn techniques demonstrate their potential to combine different NWP models to improve storm wind speed prediction, compared to the use of a single NWP.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0198.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marina Astitha, marina.astitha@uconn.edu

Abstract

This study presents a new implementation of the analog ensemble method (AnEn) to improve the prediction of wind speed for 146 storms that have impacted the northeast United States in the period 2005–16. The AnEn approach builds an ensemble by using a set of past observations that correspond to the best analogs of numerical weather prediction (NWP). Unlike previous studies, dual-predictor combinations are used to generate AnEn members, which include wind speed, wind direction, and 2-m temperature, simulated by two state-of-the-science atmospheric models [the Weather Research and Forecasting (WRF) Model and the Regional Atmospheric Modeling System–Integrated Community Limited Area Modeling System (RAMS–ICLAMS)]. Bias correction is also applied to each analog to gain additional benefits in predicting wind speed. Both AnEn and the bias-corrected analog ensemble (BCAnEn) are tested with a weighting strategy, which optimizes the predictor combination with root-mean-square error (RMSE) minimization. A leave-one-out cross validation is implemented, that is, each storm is predicted using the remaining 145 as the training dataset, with modeled and observed values over 80 stations in the northeast United States. The results show improvements of 9%–42% and 1%–29% with respect to original WRF and ICLAMS simulations, as measured by the RMSE of individual storms. Moreover, for two high-impact tropical storms (Irene and Sandy), BCAnEn significantly reduces the error of raw prediction (average RMSE reduction of 22% for Irene and 26% for Sandy). The AnEn and BCAnEn techniques demonstrate their potential to combine different NWP models to improve storm wind speed prediction, compared to the use of a single NWP.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0198.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marina Astitha, marina.astitha@uconn.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.97 MB)
Save
  • Alessandrini, S., F. Davò, S. Sperati, M. Benini, and L. Delle Monache, 2014: Comparison of the economic impact of different wind power forecast systems for producers. Adv. Sci. Res., 11, 4953, https://doi.org/10.5194/asr-11-49-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, S. Sperati, and J. N. Nissen, 2015a: A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768781, https://doi.org/10.1016/j.renene.2014.11.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015b: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95110, https://doi.org/10.1016/j.apenergy.2015.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, C. Rozoff, and W. Lewis, 2018: Probabilistic prediction of the tropical cyclone intensity with an analog ensemble. Mon. Wea. Rev., 146, 17231744, https://doi.org/10.1175/MWR-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergen, R. E., and R. P. Harnack, 1982: Long-range temperature prediction using a simple analog approach. Mon. Wea. Rev., 110, 10831099, https://doi.org/10.1175/1520-0493(1982)110<1083:LRTPUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, R. G., and R. E. Keislar, 2000: Emergency response transport forecasting using historical wind field pattern matching. J. Appl. Meteor., 39, 446462, https://doi.org/10.1175/1520-0450(2000)039<0446:ERTFUH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davò, F., S. Alessandrini, S. Sperati, L. Delle Monache, D. Airoldi, and M. T. Vespucci, 2016: Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Sol. Energy, 134, 327338, https://doi.org/10.1016/j.solener.2016.04.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., 2017: Postprocessing of air quality predictions. 2017 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A33L-01.

  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, https://doi.org/10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djalalova, I., L. Delle Monache, and J. Wilczak, 2015: PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ., 119, 431442, https://doi.org/10.1016/j.atmosenv.2015.05.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1994: Analog (nonlinear) forecasts of the Southern Oscillation index time series. Wea. Forecasting, 9, 7884, https://doi.org/10.1175/1520-0434(1994)009<0078:AFOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and L. Delle Monache, 2016: A hybrid NWP–analog ensemble. Mon. Wea. Rev., 144, 897911, https://doi.org/10.1175/MWR-D-15-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fountoukis, C., and A. Nenes, 2005: Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res., 110, D11212, https://doi.org/10.1029/2004JD005591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., H. Ren, J. Li, and J. Chou, 2006: Analogue correction method of errors and its application to numerical weather prediction. Chin. Phys., 15, 882, https://doi.org/10.1088/1009-1963/15/4/038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., D. W. Wanik, B. M. Hartman, E. N. Anagnostou, M. Astitha, and M. Frediani, 2017: Nonparametric tree-based predictive modeling of storm outages on an electric distribution network. Risk Anal., 37, 441458, https://doi.org/10.1111/risa.12652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jammalamadaka, S. R., and A. Sengupta, 2001: Topics in Circular Statistics. Series on Multivariate Analysis, Vol. 5, World Scientific, 322 pp.

    • Crossref
    • Export Citation
  • Junk, C., L. Delle Monache, S. Alessandrini, G. Cervone, and L. von Bremen, 2015a: Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteor. Z., 24, 361379, https://doi.org/10.1127/metz/2015/0659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, and S. Alessandrini, 2015b: Analog-based ensemble model output statistics. Mon. Wea. Rev., 143, 29092917, https://doi.org/10.1175/MWR-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J., L. Delle Monache, and S. Alessandrini, 2017: Statistical downscaling of a high-resolution precipitation reanalysis using the analog ensemble method. J. Appl. Meteor. Climatol., 56, 20812095, https://doi.org/10.1175/JAMC-D-16-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klausner, Z., H. Kaplan, and E. Fattal, 2009: The similar days method for predicting near surface wind vectors. Meteor. Appl., 16, 569579, https://doi.org/10.1002/met.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and A. G. Barnston, 1988: An operational multifield analog/antianalog prediction system for United States seasonal temperatures. Part I: System design and winter experiments. J. Geophys. Res., 93, 10 95310 974, https://doi.org/10.1029/JD093iD09p10953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670682, https://doi.org/10.1109/TSTE.2012.2201758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., L. Delle Monache, J. P. Hacker, D. L. Rife, K. Searight, J. C. Knievel, and T. N. Nipen, 2015: An evaluation of analog-based postprocessing methods across several variables and forecast models. Wea. Forecasting, 30, 16231643, https://doi.org/10.1175/WAF-D-14-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP/NWS/NOAA/DOC, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. NCAR Research Data Archive Computational and Information Systems Lab, accessed September 2016, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • NCEP/NWS/NOAA/DOC, 2007: NCEP Global Forecast System (GFS) analyses and forecasts. NCAR Research Data Archive Computational and Information Systems Lab, accessed September 2016, https://doi.org/10.5065/D65Q4TSG.

    • Crossref
    • Export Citation
  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, https://doi.org/10.1029/2002JD002911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panziera, L., U. Germann, M. Gabella, and P. V. Mandapaka, 2011: NORA–Nowcasting of orographic rainfall by means of analogues. Quart. J. Roy. Meteor. Soc., 137, 21062123, https://doi.org/10.1002/qj.878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radinović, D., 1975: An analogue method for weather forecasting using the 500/1000 mb relative topography. Mon. Wea. Rev., 103, 639649, https://doi.org/10.1175/1520-0493(1975)103<0639:AAMFWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H., and J. Chou, 2007: Strategy and methodology of dynamical analogue prediction. Sci. Chin., 50D, 15891599, https://doi.org/10.1007/s11430-007-0109-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.

  • Solomos, S., G. Kallos, J. Kushta, M. Astitha, C. Tremback, A. Nenes, and Z. Levin, 2011: An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys., 11, 873892, https://doi.org/10.5194/acp-11-873-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperati, S., S. Alessandrini, and L. Delle Monache, 2017: Gridded probabilistic weather forecasts with an analog ensemble. Quart. J. Roy. Meteor. Soc., 143, 28742885, https://doi.org/10.1002/qj.3137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land-surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., 1989: Long-range weather forecasting using an analog approach. J. Climate, 2, 594607, https://doi.org/10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1989: A new look at weather forecasting through analogues. Mon. Wea. Rev., 117, 22302247, https://doi.org/10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324, https://doi.org/10.3402/tellusa.v46i3.15481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 2007: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 240 pp.

    • Crossref
    • Export Citation
  • Vanvyve, E., L. Delle Monache, A. J. Monaghan, and J. O. Pinto, 2015: Wind resource estimates with an analog ensemble approach. Renewable Energy, 74, 761773, https://doi.org/10.1016/j.renene.2014.08.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. Cotton, M. Meyers, and J. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944, https://doi.org/10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanik, D. W., E. N. Anagnostou, B. M. Hartman, M. E. Frediani, and M. Astitha, 2015: Storm outage modeling for an electric distribution network in northeastern USA. Nat. Hazards, 79, 13591384, https://doi.org/10.1007/s11069-015-1908-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanik, D. W., J. R. Parent, E. N. Anagnostou, and B. M. Hartman, 2017: Using vegetation management and LiDAR-derived tree height data to improve outage predictions for electric utilities. Electr. Power Syst. Res., 146, 236245, https://doi.org/10.1016/j.epsr.2017.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., and B. N. Goswami, 2007: An analog method for real-time forecasting of summer monsoon subseasonal variability. Mon. Wea. Rev., 135, 41494160, https://doi.org/10.1175/2007MWR1854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., M. Astitha, E. Anagnostou, and B. Hartman, 2017: Using a Bayesian regression approach on dual-model windstorm simulations to improve wind speed prediction. J. Appl. Meteor. Climatol., 56, 11551174, https://doi.org/10.1175/JAMC-D-16-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., C. Draxl, T. Hopson, L. Delle Monache, E. Vanvyve, and B. M. Hodge, 2015: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl. Energy, 156, 528541, https://doi.org/10.1016/j.apenergy.2015.07.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2794 690 102
PDF Downloads 666 132 5