Regionally Enhanced Global (REG) 4D-Var

Michael A. Herrera National Research Council at Naval Research Laboratory, Washington, D.C.

Search for other papers by Michael A. Herrera in
Current site
Google Scholar
PubMed
Close
,
Istvan Szunyogh Texas A&M University, College Station, Texas

Search for other papers by Istvan Szunyogh in
Current site
Google Scholar
PubMed
Close
,
Adam Brainard Texas A&M University, College Station, Texas

Search for other papers by Adam Brainard in
Current site
Google Scholar
PubMed
Close
,
David D. Kuhl Naval Research Laboratory, Washington, D.C.

Search for other papers by David D. Kuhl in
Current site
Google Scholar
PubMed
Close
,
Karl Hoppel Naval Research Laboratory, Washington, D.C.

Search for other papers by Karl Hoppel in
Current site
Google Scholar
PubMed
Close
,
Craig H. Bishop Naval Research Laboratory, Monterey, California

Search for other papers by Craig H. Bishop in
Current site
Google Scholar
PubMed
Close
,
Teddy R. Holt Naval Research Laboratory, Monterey, California

Search for other papers by Teddy R. Holt in
Current site
Google Scholar
PubMed
Close
,
Qingyun Zhao Naval Research Laboratory, Monterey, California

Search for other papers by Qingyun Zhao in
Current site
Google Scholar
PubMed
Close
, and
Sabrina Rainwater National Research Council at Naval Research Laboratory, Monterey, California

Search for other papers by Sabrina Rainwater in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A regionally enhanced global (REG) data assimilation (DA) method is proposed. The technique blends high-resolution model information from a single or multiple limited-area model domains with global model and observational information to create a regionally enhanced analysis of the global atmospheric state. This single analysis provides initial conditions for both the global and limited-area model forecasts. The potential benefits of the approach for operational data assimilation are (i) reduced development cost, (ii) reduced overall computational cost, (iii) improved limited-area forecast performance from the use of global information about the atmospheric flow, and (iv) improved global forecast performance from the use of more accurate model information in the limited-area domains. The method is tested by an implementation on the U.S. Navy’s four-dimensional variational global data assimilation system and global and limited-area numerical weather prediction models. The results of the monthlong forecast experiments suggest that the REG DA approach has the potential to deliver the desired benefits.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Australia.

Corresponding author: Michael A. Herrera, mherr77m@gmail.com

Abstract

A regionally enhanced global (REG) data assimilation (DA) method is proposed. The technique blends high-resolution model information from a single or multiple limited-area model domains with global model and observational information to create a regionally enhanced analysis of the global atmospheric state. This single analysis provides initial conditions for both the global and limited-area model forecasts. The potential benefits of the approach for operational data assimilation are (i) reduced development cost, (ii) reduced overall computational cost, (iii) improved limited-area forecast performance from the use of global information about the atmospheric flow, and (iv) improved global forecast performance from the use of more accurate model information in the limited-area domains. The method is tested by an implementation on the U.S. Navy’s four-dimensional variational global data assimilation system and global and limited-area numerical weather prediction models. The results of the monthlong forecast experiments suggest that the REG DA approach has the potential to deliver the desired benefits.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Australia.

Corresponding author: Michael A. Herrera, mherr77m@gmail.com
Save
  • Baek, S.-J., B. R. Hunt, E. Kalnay, E. Ott, and I. Szunyogh, 2006: Local ensemble Kalman filtering in the presence of model bias. Tellus, 58A, 293306, https://doi.org/10.1111/j.1600-0870.2006.00178.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baek, S.-J., I. Szunyogh, B. R. Hunt, and E. Ott, 2009: Correcting for surface pressure background bias in ensemble-based analyses. Mon. Wea. Rev., 137, 23492364, https://doi.org/10.1175/2008MWR2787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlgren, P., and N. Gustafsson, 2012: Assimilating host model information into a limited area model. Tellus, 64A, 15836, https://doi.org/10.3402/tellusa.v64i0.15836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883, https://doi.org/10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danforth, C. M., E. Kalnay, and T. Miyoshi, 2007: Estimating and correcting global weather model error. Mon. Wea. Rev., 135, 281299, https://doi.org/10.1175/MWR3289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., and C. Fischer, 2008: Introducing the coupling information in a limited-area variational assimilation. Quart. J. Roy. Meteor. Soc., 134, 723735, https://doi.org/10.1002/qj.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27 (3), 116125, https://doi.org/10.5670/oceanog.2014.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., B. R. Hunt, E. Ott, C. H. Bishop, S. Rainwater, and I. Szunyogh, 2015: A composite state method for ensemble data assimilation with multiple limited-area models. Tellus, 67A, 26495, https://doi.org/10.3402/tellusa.v67.26495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., D. Giard, and V. Ivanovici, 1997: Improving the efficiency of a digital filtering scheme for diabatic initialization. Mon. Wea. Rev., 125, 19761982, https://doi.org/10.1175/1520-0493(1997)125<1976:ITEOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merkova, D., I. Szunyogh, and E. Ott, 2011: Strategies for coupling global and limited-area ensemble Kalman filter assimilation. Nonlinear Processes Geophys., 18, 415430, https://doi.org/10.5194/npg-18-415-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A4, http://ams.confex.com/ams/pdfpapers/154114.pdf.

  • Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58A, 4558, https://doi.org/10.1111/j.1600-0870.2006.00148.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., 2014: Applicable Atmospheric Dynamics: Techniques for the Exploration of Atmospheric Dynamics. World Scientific, 588 pp.

  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke, 2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus, 60A, 113130, https://doi.org/10.1111/j.1600-0870.2007.00274.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasserstein, R., and N. Lazar, 2016: The ASA’s statement on p-values: Context, process, and purpose. Amer. Stat., 70, 129133, https://doi.org/10.1080/00031305.2016.1154108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546559, https://doi.org/10.3402/tellusa.v57i4.14710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, Y., B. Hunt, E. Ott, and I. Szunyogh, 2012: Simultaneous global and limited-area ensemble data assimilation using joint states. Tellus, 64A, 18407, https://doi.org/10.3402/tellusa.v64i0.18407.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 122 5
PDF Downloads 284 148 2