Modified NAM Microphysics for Forecasts of Deep Convective Storms

Eric A. Aligo IMSG, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Eric A. Aligo in
Current site
Google Scholar
PubMed
Close
,
Brad Ferrier IMSG, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Brad Ferrier in
Current site
Google Scholar
PubMed
Close
, and
Jacob R. Carley IMSG, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Jacob R. Carley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Ferrier–Aligo (FA) microphysics scheme has been running operationally in the National Centers for Environmental Prediction (NCEP) North American Mesoscale Forecast System (NAM) since August 2014. It was developed to improve forecasts of deep convection in the NAM contiguous United States (CONUS) nest, and it replaces previous versions of the NAM microphysics. The FA scheme is the culmination of extensive microphysical scheme sensitivity experiments made over nearly a dozen warm- and cool-season severe weather cases, as well as an extensive real-time testing in a full, system-wide developmental version of the NAM. While the FA scheme advects each hydrometeor species separately, it was the mass-weighted rime factor (RF) that allowed rimed ice to be advected to very cold temperatures aloft and improved the vertical structure of deep convection. Rimed ice fall speeds were reduced in order to offset an increase in bias of heavy precipitation as a consequence of the mass-weighted RF advection. The FA scheme also incorporated findings from 3-km model runs using the Thompson scheme, including 1) improved closure assumptions for large precipitating ice that targeted the convective and anvil regions of storms, 2) a new diagnostic calculation of radar reflectivity from rimed ice in association with intense convection, and 3) a variable rain intercept parameter that reduced widespread spurious weak reflectivity from shallow boundary layer clouds and increased stratiform rainfall.

Current affiliation: NOAA/NWS/NCEP/EMC, College Park, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric A. Aligo, eric.aligo@noaa.gov

Abstract

The Ferrier–Aligo (FA) microphysics scheme has been running operationally in the National Centers for Environmental Prediction (NCEP) North American Mesoscale Forecast System (NAM) since August 2014. It was developed to improve forecasts of deep convection in the NAM contiguous United States (CONUS) nest, and it replaces previous versions of the NAM microphysics. The FA scheme is the culmination of extensive microphysical scheme sensitivity experiments made over nearly a dozen warm- and cool-season severe weather cases, as well as an extensive real-time testing in a full, system-wide developmental version of the NAM. While the FA scheme advects each hydrometeor species separately, it was the mass-weighted rime factor (RF) that allowed rimed ice to be advected to very cold temperatures aloft and improved the vertical structure of deep convection. Rimed ice fall speeds were reduced in order to offset an increase in bias of heavy precipitation as a consequence of the mass-weighted RF advection. The FA scheme also incorporated findings from 3-km model runs using the Thompson scheme, including 1) improved closure assumptions for large precipitating ice that targeted the convective and anvil regions of storms, 2) a new diagnostic calculation of radar reflectivity from rimed ice in association with intense convection, and 3) a variable rain intercept parameter that reduced widespread spurious weak reflectivity from shallow boundary layer clouds and increased stratiform rainfall.

Current affiliation: NOAA/NWS/NCEP/EMC, College Park, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric A. Aligo, eric.aligo@noaa.gov
Save
  • Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R., and C. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1965: A numerical study of air-mass transformation over the Japan Sea in winter. J. Meteor. Soc. Japan, 43, 115, https://doi.org/10.2151/jmsj1965.43.1_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., and K. R. Hanson, 1987: Sensitivity studies on the continentality of numerically simulated cumulonimbus. J. Climate Appl. Meteor., 26, 275286, https://doi.org/10.1175/1520-0450(1987)026<0275:SSOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1985: Simple altitude adjustments to rain velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2017: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Wea. Rev., 145, 19191935, https://doi.org/10.1175/MWR-D-16-0417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercoiling of water. Proc. Phys. Soc. London, 66B, 688, https://doi.org/10.1088/0370-1301/66/8/309.

  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933960, https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, https://doi.org/10.1175/0065-9401-21.43.29.

    • Crossref
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, https://doi.org/10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation microphysics in the NCEP Eta model. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm.

  • Ferrier, B. S., W. Wang, and E. Colon, 2011: Evaluating cloud microphysics schemes in nested NMMB forecasts. 24th Conf. on Weather Analysis and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14B.1, https://ams.confex.com/ams/91Annual/webprogram/Paper179488.html.

  • Fierro, A. O., J. Gao, C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and S. R. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183202, https://doi.org/10.1175/MWR-D-13-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, https://doi.org/10.1175/MWR2810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 13631382, https://doi.org/10.1175/MWR-D-15-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, https://doi.org/10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820830, https://doi.org/10.1175/1520-0469(1975)032<0820:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. C. Pflaum, 1985: A quantitative assessment of the accuracy of techniques for calculating graupel growth. J. Atmos. Sci., 42, 22642274, https://doi.org/10.1175/1520-0469(1985)042<2264:AQAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of Stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, https://doi.org/10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410, https://doi.org/10.2151/jmsj1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, https://doi.org/10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., P2.1.

  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Janjić, Z. I., 2005: A unified model approach from meso to global scales. Geophysical Research Abstracts, Vol. 7, Abstract 05582, http://www.cosis.net/abstracts/EGU05/05582/EGU05-J-05582.pdf.

  • Janjić, Z. I., and T. Black, 2007: An ESMF unified model for a broad range of spatial and temporal scales. Geophysical Research Abstracts, Vol. 9, Abstract 05025, http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2007/05025/EGU2007-J-05025.pdf.

  • Janjić, Z. I., and R. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1: Dynamics. NCAR Tech. Note NCAR/TN-489+STR, 74 pp., https://doi.org/10.5065/D6WH2MZX.

    • Crossref
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. S., Z. Cui, L. A. Lee, J. P. Gosling, A. M. Blyth, and K. S. Carslaw, 2015: Evaluating uncertainty in convective cloud microphysics using statistical emulation. J. Adv. Model. Earth Syst., 7, 162187, https://doi.org/10.1002/2014MS000383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and W. R. Cotton, 1987: Internal structure of a small mesoscale convective system. Mon. Wea. Rev., 115, 629645, https://doi.org/10.1175/1520-0493(1987)115<0629:ISOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, https://doi.org/10.1175/2010MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2016: WSR-88D radar data processing at NCEP. Wea. Forecasting, 31, 20472055, https://doi.org/10.1175/WAF-D-16-0003.1.

  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-Type parameterizations. J. Atmos. Sci., 61, 15391548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, R. McGraw, and R. Wood, 2006: Parameterization of the autoconversion process. Part II: Generalization of Sundqvist-type parameterizations. J. Atmos. Sci., 63, 11031109, https://doi.org/10.1175/JAS3675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1962: The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc., 88, 3050, https://doi.org/10.1002/qj.49708837504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist convection on the mesoscale. Colorado State University Atmospheric Science Paper 266, 73 pp.

  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, https://doi.org/10.1175/2008WAF2222152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, T. L., and K. C. Young, 1979: A numerical simulation of ice crystal growth from the vapor phase. J. Atmos. Sci., 36, 458469, https://doi.org/10.1175/1520-0469(1979)036<0458:ANSOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud: The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107128, https://doi.org/10.2151/jmsj1965.68.2_107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: 2015 Flash Flood and Intense Rainfall Experiment. NOAA Tech. Rep., 33 pp., http://origin.wpc.ncep.noaa.gov/hmt/2015_FFaIR_Final_Report.pdf.

  • Pan, Y., M. Xue, and G. Ge, 2016: Incorporating diagnosed intercept parameters and the graupel category within the ARPS cloud analysis system for the initialization of double-moment microphysics: Testing with a squall line over south China. Mon. Wea. Rev., 144, 371392, https://doi.org/10.1175/MWR-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004a: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673, https://doi.org/10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004b: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, https://doi.org/10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pflaum, J. C., and H. Pruppacher, 1979: A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36, 680689, https://doi.org/10.1175/1520-0469(1979)036<0680:AWTIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., 1991: Improvements to a commonly used cloud microphysical bulk parameterization. J. Appl. Meteor., 30, 10401042, https://doi.org/10.1175/1520-0450-30.7.1040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2017: Upgrades to the NCEP North American Mesoscale (NAM) system. Bluebook Rep., 2 pp., http://wmc.meteoinfo.ru/bluebook/uploads/2017/docs/05_Rogers_Eric_mesoscale_modeling.pdf.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, https://doi.org/10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starr, D. O’C., and S. K. Cox, 1985: Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci., 42, 26632681, https://doi.org/10.1175/1520-0469(1985)042<2663:CCPIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B. A., M. D. Parker, and D. P. Jorgensen, 2007: A convective line with leading stratiform precipitation from BAMEX. Mon. Wea. Rev., 135, 17691785, https://doi.org/10.1175/MWR3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 392 pp.

    • Crossref
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466, https://doi.org/10.1175/JAM2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szintai, B., M. Szucs, R. Randriamampianina, and L. Kullmann, 2015: Application of the AROME non-hydrostatic model at the Hungarian Meteorological Service: Physical parameterizations and ensemble forecasting. Quart. J. Hung. Meteor. Serv., 119, 241265.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vescio, M., and Coauthors, 2013: The historic derecho of June 29, 2012. NWS Service Assessment, 61 pp., https://www.weather.gov/media/publications/assessments/derecho12.pdf.

  • Wainwright, C. E., D. T. Dawson II, M. Xue, and G. Zhang, 2014: Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J. Appl. Meteor. Climatol, 53, 20722090, https://doi.org/10.1175/JAMC-D-13-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, E. J. O’Connor, and A. J. Illingworth, 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos. Meas. Tech., 3, 671681, https://doi.org/10.5194/amt-3-671-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., and Coauthors, 2016: Mesoscale model evaluation testbed (MMET): A resource for transitioning NWP innovations from research to operations (R2O). Bull. Amer. Meteor. Soc., 97, 21352147, https://doi.org/10.1175/BAMS-D-15-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1993: Microphysical Processes in Clouds. Oxford University Press, 448 pp.

  • Yuan, T., J. V. Martins, Z. Li, and L. A. Remer, 2010: Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett., 37, L08808, https://doi.org/10.1029/2010GL042753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, https://doi.org/10.1175/JTECH-1689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953, https://doi.org/10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1309 426 63
PDF Downloads 711 168 9