An Observing System Simulation Experiment with a Constellation of Radio Occultation Satellites

L. Cucurull NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by L. Cucurull in
Current site
Google Scholar
PubMed
Close
,
R. Atlas NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by R. Atlas in
Current site
Google Scholar
PubMed
Close
,
R. Li Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by R. Li in
Current site
Google Scholar
PubMed
Close
,
M. J. Mueller Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by M. J. Mueller in
Current site
Google Scholar
PubMed
Close
, and
R. N. Hoffman Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by R. N. Hoffman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Experiments with a global observing system simulation experiment (OSSE) system based on the recent 7-km-resolution NASA nature run (G5NR) were conducted to determine the potential value of proposed Global Navigation Satellite System (GNSS) radio occultation (RO) constellations in current operational numerical weather prediction systems. The RO observations were simulated with the geographic sampling expected from the original planned Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) system, with six equatorial (total of ~6000 soundings per day) and six polar (total of ~6000 soundings per day) receiver satellites. The experiments also accounted for the expected improved vertical coverage provided by the Jet Propulsion Laboratory RO receivers on board COSMIC-2. Except that RO observations were simulated and assimilated as refractivities, the 2015 version of the NCEP’s operational data assimilation system was used to run the OSSEs. The OSSEs quantified the impact of RO observations on global weather analyses and forecasts and the impact of adding explicit errors to the simulation of perfect RO profiles. The inclusion or exclusion of explicit errors had small, statistically insignificant impacts on results. The impact of RO observations was found to increase the length of the useful forecasts. In experiments with explicit errors, these increases were found to be 0.6 h in the Northern Hemisphere extratropics (a 0.4% improvement), 5.9 h in the Southern Hemisphere extratropics (a significant 4.0% improvement), and 12.1 h in the tropics (a very substantial 28.4% improvement).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Cucurull, lidia.cucurull@noaa.gov

Abstract

Experiments with a global observing system simulation experiment (OSSE) system based on the recent 7-km-resolution NASA nature run (G5NR) were conducted to determine the potential value of proposed Global Navigation Satellite System (GNSS) radio occultation (RO) constellations in current operational numerical weather prediction systems. The RO observations were simulated with the geographic sampling expected from the original planned Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) system, with six equatorial (total of ~6000 soundings per day) and six polar (total of ~6000 soundings per day) receiver satellites. The experiments also accounted for the expected improved vertical coverage provided by the Jet Propulsion Laboratory RO receivers on board COSMIC-2. Except that RO observations were simulated and assimilated as refractivities, the 2015 version of the NCEP’s operational data assimilation system was used to run the OSSEs. The OSSEs quantified the impact of RO observations on global weather analyses and forecasts and the impact of adding explicit errors to the simulation of perfect RO profiles. The inclusion or exclusion of explicit errors had small, statistically insignificant impacts on results. The impact of RO observations was found to increase the length of the useful forecasts. In experiments with explicit errors, these increases were found to be 0.6 h in the Northern Hemisphere extratropics (a 0.4% improvement), 5.9 h in the Southern Hemisphere extratropics (a significant 4.0% improvement), and 12.1 h in the tropics (a very substantial 28.4% improvement).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Cucurull, lidia.cucurull@noaa.gov
Save
  • Anlauf, H., D. Pingel, and A. Rhodin, 2011: Assimilation of GPS radio occultation data at DWD. Atmos. Meas. Tech., 4, 11051113, https://doi.org/10.5194/amt-4-1105-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89, 313334, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136, 257275, https://doi.org/10.1175/2007MWR1951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130, https://doi.org/10.2151/jmsj1965.75.1B_111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., E. Kalnay, and M. Halem, 1985: Impact of satellite temperature sounding and wind data on numerical weather prediction. Opt. Eng., 24, 242341, https://doi.org/10.1117/12.7973481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2015a: Observing system simulation experiments (OSSEs) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction. J. Atmos. Oceanic Technol., 32, 15931613, https://doi.org/10.1175/JTECH-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., L. Bucci, B. Annane, R. Hoffman, and S. Murillo, 2015b: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Mar. Technol. Soc. J., 49, 140148, https://doi.org/10.4031/MTSJ.49.6.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Radnóti, S. B. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., 142, 555572, https://doi.org/10.1175/MWR-D-13-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140, 25462562, https://doi.org/10.1002/qj.2320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and Coauthors, 2016: Community global observing system simulation experiment (OSSE) package (CGOP): Description and usage. J. Atmos. Oceanic Technol., 33, 17591777, https://doi.org/10.1175/JTECH-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and Coauthors, 2018a: Community global observing system simulation experiment (OSSE) package (CGOP): Perfect observations simulation validation. J. Atmos. Oceanic Technol., 35, 207226, https://doi.org/10.1175/JTECH-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and Coauthors, 2018b: Community global observing system simulation experiment (OSSE) package (CGOP): Assessment and validation of the OSSE system using an OSSE–OSE intercomparison of summary assessment metrics. J. Atmos. Oceanic Technol., 35, 20612078, https://doi.org/10.1175/JTECH-D-18-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Weng, Y. Han, and Q. Liu, 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, https://doi.org/10.1029/2007JD009561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and J. C. Derber, 2008: Operational implementation of COSMIC observations into the NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711, https://doi.org/10.1175/2008WAF2007070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and R. A. Anthes, 2015: Impact of loss of U.S. microwave and radio occultation observations in operational numerical weather prediction in support of the U.S. data gap mitigation activities. Wea. Forecasting, 30, 255269, https://doi.org/10.1175/WAF-D-14-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, https://doi.org/10.1029/2012JD017782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. Li, and T. Peevey, 2017: Assessment of radio occultation observations from the COSMIC-2 mission with a simplified observing system simulation experiment configuration. Mon. Wea. Rev., 145, 35813597, https://doi.org/10.1175/MWR-D-16-0475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, https://doi.org/10.1256/qj.05.137.

  • Ding, S., P. Yang, F. Weng, Q. Liu, Y. Han, P. van Delst, J. Li, and B. Baum, 2011: Validation of the Community Radiative Transfer Model. J. Quant. Spectrosc. Radiat. Transfer, 112, 10501064, https://doi.org/10.1016/j.jqsrt.2010.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, https://doi.org/10.1002/qj.2027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., A. Srinivasan, V. Kourafalou, H. Yang, D. Willey, M. Le Hénaff, and R. Atlas, 2014: Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Oceanic Technol., 31, 105130, https://doi.org/10.1175/JTECH-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., V. Kourafalou, M. Le Hénaff, L. K. Shay, and R. Atlas, 2015: OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico. Prog. Oceanogr., 130, 3246, https://doi.org/10.1016/j.pocean.2014.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, https://doi.org/10.1256/qj.04.182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, https://doi.org/10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2006: Observing system simulation experiments at NCEP. NCEP Office Note 451, 34 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on451.pdf.

  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, https://doi.org/10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., A. M. da Silva, L. E. Ott, and A. Darmenov, 2014: Model configuration for the 7-km GEOS-5 nature run, Ganymed release (Non-hydrostatic 7 km global mesoscale simulation). GMAO Office Note 5 (version 1.0), 18 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Putman727.pdf.

  • Putman, W. M., A. Darmenov, A. da Silva, R. Gelaro, A. Molod, L. Ott, and M. J. Suarez, 2015: A 7-km non-hydrostatic global mesoscale simulation for OSSEs with the Goddard Earth Observing System model (GEOS-5). 19th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 3.1, https://ams.confex.com/ams/95Annual/webprogram/Paper260701.html.

  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, https://doi.org/10.1002/qj.521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocken, C., Y.-H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, 2000: COSMIC system description. Terr. Atmos. Ocean. Sci., 11, 2152, https://doi.org/10.3319/TAO.2000.11.1.21(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., S. Sokolovskiy, D. Hunt, C. Rocken, and Y.-H. Kuo, 2011: Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech., 4, 22552272, https://doi.org/10.5194/amt-4-2255-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 149 6
PDF Downloads 244 65 3