Object-Based Algorithm for the Identification and Tracking of Convective Outflow Boundaries in Numerical Models

Hristo G. Chipilski School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Hristo G. Chipilski in
Current site
Google Scholar
PubMed
Close
,
Xuguang Wang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
, and
David B. Parsons School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A novel object-based algorithm capable of identifying and tracking convective outflow boundaries in convection-allowing numerical models is presented in this study. The most distinct feature of the proposed algorithm is its ability to seamlessly analyze numerically simulated density currents and bores, both of which play an important role in the dynamics of nocturnal convective systems. The unified identification and classification of these morphologically different phenomena is achieved through a multivariate approach combined with appropriate image processing techniques. The tracking component of the algorithm utilizes two dynamical constraints, which improve the object association results in comparison to methods based on statistical assumptions alone. Special attention is placed on some of the outstanding challenges regarding the formulation of the algorithm and possible ways to address those in future research. Apart from describing the technical details behind the algorithm, this study also introduces specific algorithm applications relevant to the analysis and prediction of bores. These applications are illustrated for a retrospective case study simulated with a convection-allowing ensemble prediction system. The paper highlights how the newly developed algorithm tools naturally form a foundation for understanding the initiation, structure, and evolution of bores and convective systems in the nocturnal environment.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0116.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hristo Georgiev Chipilski, hristo.chipilski@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

A novel object-based algorithm capable of identifying and tracking convective outflow boundaries in convection-allowing numerical models is presented in this study. The most distinct feature of the proposed algorithm is its ability to seamlessly analyze numerically simulated density currents and bores, both of which play an important role in the dynamics of nocturnal convective systems. The unified identification and classification of these morphologically different phenomena is achieved through a multivariate approach combined with appropriate image processing techniques. The tracking component of the algorithm utilizes two dynamical constraints, which improve the object association results in comparison to methods based on statistical assumptions alone. Special attention is placed on some of the outstanding challenges regarding the formulation of the algorithm and possible ways to address those in future research. Apart from describing the technical details behind the algorithm, this study also introduces specific algorithm applications relevant to the analysis and prediction of bores. These applications are illustrated for a retrospective case study simulated with a convection-allowing ensemble prediction system. The paper highlights how the newly developed algorithm tools naturally form a foundation for understanding the initiation, structure, and evolution of bores and convective systems in the nocturnal environment.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0116.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hristo Georgiev Chipilski, hristo.chipilski@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 1.93 MB)
Save
  • Ahmed, N., T. Natarajan, and K. R. Rao, 1974: Discrete cosine transform. IEEE Trans. Comput., 23C, 9093, https://doi.org/10.1109/T-C.1974.223784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baer, F., and J. J. Tribbia, 1977: On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev., 105, 15361539, https://doi.org/10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW Model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunelli, R., 2009: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley, 348 pp.

    • Crossref
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, https://doi.org/10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., A. MacKenzie, A. McGovern, V. Lakshmanan, and R. A. Brown, 2015: An automated, multiparameter dryline identification algorithm. Wea. Forecasting, 30, 17811794, https://doi.org/10.1175/WAF-D-15-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., R. E. Carbone, M. W. Moncrieff, and J. W. Conway, 1990: The generation and propagation of a nocturnal squall line. Part II: Numerical simulations. Mon. Wea. Rev., 118, 5066, https://doi.org/10.1175/1520-0493(1990)118<0050:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, and R. Bullock, 2009a: Spatial and temporal object-based evaluation of numerical prediction forecasts. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 5A.4.

  • Davis, C. A., B. G. Brown, R. Bullock, and J. Halley-Gotway, 2009b: The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoy, R. L., and S. W. Troxel, 1993: Machine intelligent gust front algorithm. MIT Tech. Rep. ATC-196, 96 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a273695.pdf.

  • Delanoy, R. L., J. G. Verly, and D. E. Dudgeon, 1992: Functional templates and their application to 3-D object recognition. ICASSP-92: 1992 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, San Francisco, CA, IEEE, https://doi.org/10.1109/ICASSP.1992.226256.

    • Crossref
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, E. W., 1959: A note on two problems in connection with graphs. Numer. Math., 1, 269271, https://doi.org/10.1007/BF01386390.

  • Dougherty, E. R., 1992: An Introduction to Morphological Image Processing. SPIE Optical Engineering Press, 161 pp.

  • Dougherty, E. R., and R. A. Lotufo, 2003: Hands-On Morphological Image Processing. SPIE Optical Engineering Press, 290 pp.

    • Crossref
    • Export Citation
  • Drager, A. J., and S. C. van den Heever, 2017: Characterizing convective cold pools. J. Adv. Model. Earth Syst., 9, 10911115, https://doi.org/10.1002/2016MS000788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eilts, M. D., S. Olson, G. J. Stumpf, L. G. Hermes, J. C. Abrevaya, K. Thomas, K. Hondl, and D. Klingle-Wilson, 1991: An improved gust front detection algorithm for the TDWR. Proc. Fourth Int. Conf. on the Aviation Weather System, Paris, France, Amer. Meteor. Soc., J37.

  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Garelli, S.-B. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874883, https://doi.org/10.1002/2015GL067262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and B. T. Blake, 2015: Forecasting bores during PECAN 2015: A case study. 16th Conf. on Mesoscale Processes, Boston, MA, Amer. Meteor. Soc., 13.5, https://ams.confex.com/ams/16Meso/webprogram/Paper274581.html.

  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077, https://doi.org/10.1175/MWR-D-11-00356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2013: Object-based evaluation of a storm-scale ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment. Mon. Wea. Rev., 141, 10791098, https://doi.org/10.1175/MWR-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011a: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693, https://doi.org/10.1175/MWR-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, M. Xue, and F. Kong, 2011b: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble clustering over the whole experiment period. Mon. Wea. Rev., 139, 36943710, https://doi.org/10.1175/MWR-D-11-00016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, https://doi.org/10.1175/MWR-D-13-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, and S. Degelia, 2017: Design and implementation of a GSI-based convection-allowing ensemble-based data assimilation and forecast system for the PECAN field experiment. Part II: Overview and evaluation of a real-time System. Wea. Forecasting, 32, 12271251, https://doi.org/10.1175/WAF-D-16-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, https://doi.org/10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon. Wea. Rev., 136, 13731400, https://doi.org/10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., 2012: Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human and Environmental Applications. Springer, 320 pp.

    • Crossref
    • Export Citation
  • Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003: Multiscale storm identification and forecast. J. Atmos. Res., 67–68, 367380, https://doi.org/10.1016/S0169-8095(03)00068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., and D. M. Romps, 2015: The origin of water vapor rings in tropical oceanic cold pools. Geophys. Res. Lett., 42, 78257834, https://doi.org/10.1002/2015GL065623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Zuidema, and P. Zhu, 2014: Simulated convective invigoration processes at trade wind cumulus cold pool boundaries. J. Atmos. Sci., 71, 28232841, https://doi.org/10.1175/JAS-D-13-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002: A new look at the super outbreak of tornadoes on 3–4 April 1974. Mon. Wea. Rev., 130, 16331651, https://doi.org/10.1175/1520-0493(2002)130<1633:ANLATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and R. H. Johnson, 2008: An observational and modeling study of an atmospheric internal bore during NAME 2004. Mon. Wea. Rev., 136, 41504167, https://doi.org/10.1175/2008MWR2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2018: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the southern Great Plains. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0172.1, in press.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reiter, P., O. Gutjahr, L. Schefczyk, G. Heinemann, and M. Casper, 2018: Does applying quantile mapping to subsamples improve the bias correction of daily precipitation? Int. J. Climatol., 38, 16231633, https://doi.org/10.1002/joc.5283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J., and J. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Seigel, R. B., 2014: Shallow cumulus mixing and subcloud-layer responses to variations in aerosol loading. J. Atmos. Sci., 71, 25812603, https://doi.org/10.1175/JAS-D-13-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, D. J., B. J. Bennett, and R. Frankel, 2005: MIGFA: The Machine Intelligent Gust Front Algorithm for NEXRAD. 32nd Conf. on Radar Meteorology/11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 8R.4, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96098.htm.

  • Smith, S., A. Witt, M. D. Eilts, L. G. Hermes, D. Klingle-Wilson, S. Olson, and J. P. Stanford, 1989: Gust front detection algorithm for the terminal Doppler weather radar. Part I: Current status. Proc. Third Int. Conf. on the Aviation Weather System, Anaheim, CA, Amer. Meteor. Soc., 31–34.

  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. Weygandt, T. Smirnova, and B. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.

  • Soille, P., 2003: Morphological Image Analysis: Principles and Applications. Springer, 392 pp.

    • Crossref
    • Export Citation
  • Tobias, O. J., and R. Seara, 2002: Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans. Image Process., 11, 14571465, https://doi.org/10.1109/TIP.2002.806231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troxel, S. W., R. L. Delanoy, J. P. Morgan, and W. L. Pughe, 1996: Machine intelligent gust front algorithm for the Terminal Doppler Weather Radar (TDWR) and Integrated Terminal Weather System (ITWS). AMS Workshop on Wind Shear and Wind Shear Alert Systems, Oklahoma City, OK, Amer. Meteor. Soc., 70–79.

  • Uyeda, H., and D. S. Zrnić, 1986: Automatic detection of gust fronts. J. Atmos. Oceanic Technol., 3, 3650, https://doi.org/10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 17361749, https://doi.org/10.1175/JAM2160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2012: A general description of a gravity current front propagating in a two-layer stratified fluid. J. Fluid Mech., 711, 545575, https://doi.org/10.1017/jfm.2012.409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3734 2875 1683
PDF Downloads 525 91 4