Latent Heat Nudging in the Canadian Regional Deterministic Prediction System

Dominik Jacques Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Dominik Jacques in
Current site
Google Scholar
PubMed
Close
,
Daniel Michelson Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Daniel Michelson in
Current site
Google Scholar
PubMed
Close
,
Jean-François Caron Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Jean-François Caron in
Current site
Google Scholar
PubMed
Close
, and
Luc Fillion Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Luc Fillion in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reports on the progress toward operational weather radar data assimilation in Canada. As a first step, the latent heat nudging (LHN) technique has been tested for a period of 1 month. It is the first time that LHN is used across the North American continent, a domain significantly larger than that of other LHN studies. Other novel aspects of this study include the use of a quality index associated with individual reflectivity measurements and a discussion on matching the effective resolution of the modeled precipitation for a reduction of the representation errors. Various verification scores indicate that LHN has a positive influence on instantaneous precipitation rates for lead times up to 3 h. In comparison, the nowcasting of precipitation rates by a simple Lagrangian extrapolation method yields improvements that last up to approximately 4 h. Verifications against aircraft measurements indicate small but statistically significant improvements throughout the troposphere for lead times up to 24 h.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dominik Jacques, dominik.jacques@canada.ca

Abstract

This study reports on the progress toward operational weather radar data assimilation in Canada. As a first step, the latent heat nudging (LHN) technique has been tested for a period of 1 month. It is the first time that LHN is used across the North American continent, a domain significantly larger than that of other LHN studies. Other novel aspects of this study include the use of a quality index associated with individual reflectivity measurements and a discussion on matching the effective resolution of the modeled precipitation for a reduction of the representation errors. Various verification scores indicate that LHN has a positive influence on instantaneous precipitation rates for lead times up to 3 h. In comparison, the nowcasting of precipitation rates by a simple Lagrangian extrapolation method yields improvements that last up to approximately 4 h. Verifications against aircraft measurements indicate small but statistically significant improvements throughout the troposphere for lead times up to 24 h.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dominik Jacques, dominik.jacques@canada.ca
Save
  • Alexander, C., D. Dowell, M. Hu, T. Ladwig, S. Weygandt, and S. G. Benjamin, 2017: Expanding use of radar data in deterministic and ensemble data assimilation for the High-Resolution Rapid Refresh (HRRR). 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 19B.2, https://ams.confex.com/ams/38RADAR/webprogram/Paper321169.html.

  • Ballard, S. P., Z. Li, D. Simonin, and J.-F. Caron, 2016: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012. Quart. J. Roy. Meteor. Soc., 142, 472487, https://doi.org/10.1002/qj.2665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson, 1999: An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor., 38, 14991518, https://doi.org/10.1175/1520-0450(1999)038<1499:AEOLVN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, C. Girard, and P. Vaillancourt, 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960, https://doi.org/10.1175/MWR2958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bick, T., and Coauthors, 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Quart. J. Roy. Meteor. Soc., 142, 14901504, https://doi.org/10.1002/qj.2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J.-F., T. Milewski, M. Buehner, L. Fillion, M. Reszka, S. Macpherson, and J. St-James, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part II: The regional system. Mon. Wea. Rev., 143, 25602580, https://doi.org/10.1175/MWR-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude convective storm by the assimilation of single–Doppler radar observations. Mon. Wea. Rev., 137, 41154135, https://doi.org/10.1175/2009MWR2731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, K.-S., W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of situation-dependent background error covariances at the convective scale in the context of the ensemble Kalman filter. Mon. Wea. Rev., 141, 33693387, https://doi.org/10.1175/MWR-D-12-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., and A. Buzzi, 2004: A nudging scheme for the assimilation of precipitation data into a mesoscale model. Wea. Forecasting, 19, 855871, https://doi.org/10.1175/1520-0434(2004)019<0855:ANSFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., Z. Li, H. Lean, N. Roberts, and S. Ballard, 2009: Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Wea. Rev., 137, 15621584, https://doi.org/10.1175/2008MWR2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, R., 1990: The Stormy Weather Group (Canada). Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 61–68, https://doi.org/10.1007/978-1-935704-15-7_8.

    • Crossref
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Errico, R. M., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798, https://doi.org/10.1175/2006JAS2044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2015: Radar Meteorology: Principles and Practice. Cambridge University Press, 256 pp.

    • Crossref
    • Export Citation
  • Fortin, V., G. Roy, N. Donaldson, and A. Mahidjiba, 2015: Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA). J. Hydrol., 531, 296307 , https://doi.org/10.1016/j.jhydrol.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hull, C. L., 1927: The correlation coefficient and its prognostic significance. J. Educ. Res., 15, 327338, https://doi.org/10.1080/00220671.1927.10879751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, D., and I. Zawadzki, 2015: The impacts of representing the correlation of errors in radar data assimilation. Part II: Model output as background estimates. Mon. Wea. Rev., 143, 26372656, https://doi.org/10.1175/MWR-D-14-00243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, D., W. Chang, S.-J. Baek, T. Milewski, L. Fillion, K.-S. Chung, and H. Ritchie, 2017a: Developing a convective-scale EnKF data assimilation system for the Canadian MEOPAR project. Mon. Wea. Rev., 145, 14731494, https://doi.org/10.1175/MWR-D-16-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, D., D. B. Michelson, and L. Fillion, 2017b: Implementing the latent heat nudging (LHN) algorithm in the Canadian Regional Deterministic Prediction System (RDPS). 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 19B.7, https://ams.confex.com/ams/38RADAR/webprogram/Paper320749.html.

  • James, E. P., and S. G. Benjamin, 2017: Observation system experiments with the hourly updating Rapid Refresh model using GSI hybrid ensemble–variational data assimilation. Mon. Wea. Rev., 145, 28972918, https://doi.org/10.1175/MWR-D-16-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2017: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277, https://doi.org/10.1017/S1350482797000522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170, https://doi.org/10.1007/978-1-935704-13-3_16.

    • Crossref
    • Export Citation
  • Lee, M.-S., Y.-H. Kuo, D. M. Barker, and E. Lim, 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 13891404, https://doi.org/10.1175/MWR3129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., and A. Rossa, 2007: Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm. Meteor. Atmos. Phys., 98, 195215, https://doi.org/10.1007/s00703-007-0260-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Wea. Rev., 139, 20982116, https://doi.org/10.1175/2010MWR3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., and P. Bauer, 2007: “1D+4DVAR” assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 25062524, https://doi.org/10.1175/MWR3409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macpherson, B., B. J. Wright, W. H. Hand, and A. J. Maycock, 1996: The impact of MOPS moisture data in the U.K. Meteorological Office mesoscale data assimilation scheme. Mon. Wea. Rev., 124, 17461766, https://doi.org/10.1175/1520-0493(1996)124<1746:TIOMMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manobianco, J., S. Koch, V. M. Karyampudi, and A. J. Negri, 1994: The impact of assimilating satellite-derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone. Mon. Wea. Rev., 122, 341365, https://doi.org/10.1175/1520-0493(1994)122<0341:TIOASD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, D. B., R. Lewandowski, M. Szewczykowski, H. Beekhuis, and G. Haase, 2014: EUMETNET OPERA weather radar information model implementation with the HDF5 file format. EUMETNET OPERA Rep., 42 pp., http://eumetnet.eu/wp-content/uploads/2017/01/OPERA_hdf_description_2014.pdf.

  • Michelson, D. B., and Coauthors, 2018: BALTRAD advanced weather radar networking. J. Open Res. Software, 6, 12, http://doi.org/10.5334/jors.193.

  • Myers, R., 1990: Classical and Modern Regression with Applications. Duxbury/Thompson Learning, 488 pp.

  • Ośródka, K., J. Szturc, and A. Jurczyk, 2014: Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system). Meteor. Appl., 21, 256270, https://doi.org/10.1002/met.1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peura, M., 2002: Computer vision methods for anomaly removal. Proc. ERAD (2002), Delft, Netherlands, Copernicus GmbH, 312–317, https://www.copernicus.org/erad/online/erad-312.pdf.

  • Ridal, M., and M. Dahlbom, 2017: Assimilation of multinational radar reflectivity data in a mesoscale model: A proof of concept. J. Appl. Meteor. Climatol., 56, 17391751, https://doi.org/10.1175/JAMC-D-16-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzanski, E., V. Chandrasekar, and Y. Wang, 2011: The CASA nowcasting system. J. Atmos. Oceanic Technol., 28, 640655, https://doi.org/10.1175/2011JTECHA1496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., C. Pierce, N. Roberts, S. P. Ballard, and Z. Li, 2017: Performance of Met Office hourly cycling NWP-based nowcasting for precipitation forecasts. Quart. J. Roy. Meteor. Soc., 143, 28622873, https://doi.org/10.1002/qj.3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326, https://doi.org/10.1002/qj.269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131, 34393463, https://doi.org/10.1256/qj.05.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, https://doi.org/10.1002/qj.49710444110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. K. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, https://doi.org/10.1175/MWR-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248, https://doi.org/10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., M. Xue, K. Zhao, and J. Dong, 2014: Assimilation of T-TREC-retrieved winds from single-Doppler radar with an ensemble Kalman filter for the forecast of Typhoon Jangmi (2008). Mon. Wea. Rev., 142, 18921907, https://doi.org/10.1175/MWR-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and T. T. Warner, 1988: Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast: A case study. Mon. Wea. Rev., 116, 25932613, https://doi.org/10.1175/1520-0493(1988)116<2593:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wattrelot, E., O. Caumont, and J.-F. Mahfouf, 2014: Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Wea. Rev., 142, 18521873, https://doi.org/10.1175/MWR-D-13-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weygandt, S., and S. G. Benjamin, 2007: Radar reflectivity-based initialization of precipitation systems using a diabatic digital filter within the rapid update cycle. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 1B.7, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124540.htm.

  • Weygandt, S., S. G. Benjamin, T. G. Smirnova, and J. M. Brown, 2008: Assimilation of radar reflectivity data using a diabatic digital filter within the rapid update cycle. 12th Conf. on IOAS-AOLS, New Orleans, LA, Amer. Meteor. Soc., 8.4, https://ams.confex.com/ams/88Annual/techprogram/paper_134081.htm.

  • Wilson, J. W., Y. Feng, M. Chen, and R. D. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 16911714, https://doi.org/10.1175/2010WAF2222417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 810 210 7
PDF Downloads 594 162 5