Cloud Trails past Bermuda: A Five-Year Climatology from 2012 to 2016

Michael C. Johnston Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Michael C. Johnston in
Current site
Google Scholar
PubMed
Close
,
Christopher E. Holloway Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Christopher E. Holloway in
Current site
Google Scholar
PubMed
Close
, and
Robert S. Plant Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Robert S. Plant in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud trails are primarily thermally forced bands of cloud that extend downwind of small islands. A novel algorithm to classify conventional geostationary visible-channel satellite images as cloud trail (CT), nontrail (NT), or obscured (OB) is defined. The algorithm is then applied to the warm season months of five years at Bermuda comprising 16 400 images. Bermuda’s low elevation and location make this island ideal for isolating the role of the island thermal contrast on CT formation. CTs are found to occur at Bermuda with an annual cycle, peaking in July, and a diurnal cycle that peaks in midafternoon. Composites of radiosonde observations and ERA-Interim data suggest that a warm and humid low-level environment is conducive for CT development. From a Lagrangian perspective, wind direction modulates CT formation by maximizing low-level heating on local scales when winds are parallel to the long axis of the island. On larger scales, low-level wind direction also controls low-level humidity through advection.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0141.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael C. Johnston, m.c.johnston@pgr.reading.ac.uk

Abstract

Cloud trails are primarily thermally forced bands of cloud that extend downwind of small islands. A novel algorithm to classify conventional geostationary visible-channel satellite images as cloud trail (CT), nontrail (NT), or obscured (OB) is defined. The algorithm is then applied to the warm season months of five years at Bermuda comprising 16 400 images. Bermuda’s low elevation and location make this island ideal for isolating the role of the island thermal contrast on CT formation. CTs are found to occur at Bermuda with an annual cycle, peaking in July, and a diurnal cycle that peaks in midafternoon. Composites of radiosonde observations and ERA-Interim data suggest that a warm and humid low-level environment is conducive for CT development. From a Lagrangian perspective, wind direction modulates CT formation by maximizing low-level heating on local scales when winds are parallel to the long axis of the island. On larger scales, low-level wind direction also controls low-level humidity through advection.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0141.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael C. Johnston, m.c.johnston@pgr.reading.ac.uk

Supplementary Materials

    • Supplemental Materials (ZIP 123.61 KB)
Save
  • Bhumralkar, C. M., 1973: An observational and theoretical study of atmospheric flow over a heated island: Part I. Mon. Wea. Rev., 101, 719730, https://doi.org/10.1175/1520-0493(1973)101<0719:AOATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CIA, 2017: The CIA World Factbook: Bermuda. CIA, accessed 18 May 2017, https://www.cia.gov/library/publications/the-world-factbook/geos/bd.html.

  • Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129, 15501563, https://doi.org/10.1175/1520-0493(2001)129<1550:UHTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and D. F. Tucker, 2005: Flow over heated terrain. Part I: Linear theory and idealized numerical simulations. Mon. Wea. Rev., 133, 25522564, https://doi.org/10.1175/MWR2964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., 1994: Guadalupe Island cloud trail. Mon. Wea. Rev., 122, 235242, https://doi.org/10.1175/1520-0493(1994)122<0235:GICT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2008: Robust automated quality assurance of radiosonde temperatures. J. Appl. Meteor. Climatol., 47, 20812095, https://doi.org/10.1175/2008JAMC1809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., and C. M. Bhumralkar, 1969: Flow over a localized heat source. Mon. Wea. Rev., 97, 850859, https://doi.org/10.1175/1520-0493(1969)097<0850:FOALHS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., P. D. Tyson, and G. D. Emmitt, 1975: The structure of heat islands. Rev. Geophys., 13, 139165, https://doi.org/10.1029/RG013i001p00139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, https://doi.org/10.1175/JAS-D-12-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and C.-C. Wang, 2014: Boundary layer updrafts driven by airflow over heated terrain. J. Atmos. Sci., 71, 14251442, https://doi.org/10.1175/JAS-D-13-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and J. G. Fairman, 2015: Cloud trails past the Lesser Antilles. Mon. Wea. Rev., 143, 9951017, https://doi.org/10.1175/MWR-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1952: Recent advances in the study of convective clouds and their interaction with the environment. Tellus, 4, 7187, https://doi.org/10.3402/tellusa.v4i2.8680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1963: Tropical rain induced by a small natural heat source. J. Appl. Meteor., 2, 547556, https://doi.org/10.1175/1520-0450(1963)002<0547:TRIBAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and A. F. Bunker, 1952: Observational studies of the air flow over Nantucket Island during the summer of 1950. Pap. Phys. Oceanogr. Meteor., 12, 150.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and M. E. Stern, 1953: The flow of a stable atmosphere over a heated island, Part I. J. Meteor., 10, 3041, https://doi.org/10.1175/1520-0469(1953)010<0030:TFOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, 2007: Modification of the atmospheric boundary layer by a small island: Observations from Nauru. Mon. Wea. Rev., 135, 891905, https://doi.org/10.1175/MWR3319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., C. N. Long, and D. M. Flynn, 2005: Impact of island-induced clouds on surface measurements: Analysis of the ARM Nauru Island effect study data. J. Appl. Meteor., 44, 10451065, https://doi.org/10.1175/JAM2241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/Office of Satellite and Product Operations and NOAA/Center for Satellite Applications and Research, 1994: NOAA GOES 8-15 Series Imager Level 1b Data. Channel 1, NOAA National Centers for Environmental Information, accessed 24 February 2017.

  • Nordeen, M. K., P. Minnis, D. R. Doelling, D. Pethick, and L. Nguyen, 2001: Satellite observations of cloud plumes generated by Nauru. Geophys. Res. Lett., 28, 631634, https://doi.org/10.1029/2000GL012409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirce, C. S., 1884: The numerical measure of the success of predictions. Science, 4, 453454, https://doi.org/10.1126/science.ns-4.93.453-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, D. Gerstle, C. Liu, and D. J. Kirshbaum, 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, https://doi.org/10.1175/2010JAS3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijarvi, H., and S. Matthews, 2004: Flow over small heat islands: A numerical sensitivity study. J. Atmos. Sci., 61, 859868, https://doi.org/10.1175/1520-0469(2004)061<0859:FOSHIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., A. C. Gleason, P. A. Gluhosky, and V. Grubisić, 1997: The wake of St. Vincent. J. Atmos. Sci., 54, 606623, https://doi.org/10.1175/1520-0469(1997)054<0606:TWOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian Cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, https://doi.org/10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., C. D. Burleyson, and S. E. Yuter, 2011: Rain on small tropical islands. J. Geophys. Res., 116, D08102, https://doi.org/10.1029/2010JD014695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, https://doi.org/10.1029/2003JD003833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Y.-L. Chen, 2008: Effects of terrain heights and sizes on island-scale circulations and rainfall for the Island of Hawaii during HaRP. Mon. Wea. Rev., 136, 120146, https://doi.org/10.1175/2007MWR1984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, and J. Hafner, 2008a: The thermal wake of Kauai Island: Satellite observations and numerical simulations. J. Climate, 21, 45684586, https://doi.org/10.1175/2008JCLI1895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, and J. Hafner, 2008b: Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation. J. Geophys. Res., 113, D15126, https://doi.org/10.1029/2008JD009889.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 118 54
PDF Downloads 271 42 0