The Effects of Orography on the Extratropical Transition of Tropical Cyclones: A Case Study of Typhoon Sinlaku (2008)

Hilke S. Lentink Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Hilke S. Lentink in
Current site
Google Scholar
PubMed
Close
,
Christian M. Grams Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany, and Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Christian M. Grams in
Current site
Google Scholar
PubMed
Close
,
Michael Riemer Institute for Atmospheric Physics, Johannes Gutenberg-University, Mainz, Germany

Search for other papers by Michael Riemer in
Current site
Google Scholar
PubMed
Close
, and
Sarah C. Jones Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Sarah C. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hilke S. Lentink, hilke.lentink@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hilke S. Lentink, hilke.lentink@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, https://doi.org/10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., B. Adler, N. Kalthoff, J. Handwerker, M. Kohler, and A. Wieser, 2016: The role of Corsica in initiating nocturnal offshore convection. Quart. J. Roy. Meteor. Soc., 142, 222237, https://doi.org/10.1002/qj.2415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515537, https://doi.org/10.1175/1520-0434(1991)006<0515:TAROJS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and X. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations. J. Atmos. Sci., 60, 15601576, https://doi.org/10.1175/1520-0469(2003)60<1560:CAAWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 12551270, https://doi.org/10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the Northeast United States. Mon. Wea. Rev., 131, 29052926, https://doi.org/10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982a: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110, 385411, https://doi.org/10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982b: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets. Mon. Wea. Rev., 110, 412433, https://doi.org/10.1175/1520-0493(1982)110<0412:TTOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Consortium for Small-Scale Modelling Rep., 161 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.

  • Ehmele, F., C. Barthlott, and U. Corsmeier, 2015: The influence of Sardinia on Corsican rainfall in the western Mediterranean Sea: A numerical sensitivity study. Atmos. Res., 153, 451464, https://doi.org/10.1016/j.atmosres.2014.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, https://doi.org/10.1175/MWR-D-13-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653, https://doi.org/10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598615, https://doi.org/10.1175/2007MWR2134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and C. S. Velden, 2004: A pronounced bias in tropical cyclone minimum sea level pressure estimation based on the Dvorak technique. Mon. Wea. Rev., 132, 165173, https://doi.org/10.1175/1520-0493(2004)132<0165:APBITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, and C.-H. Liu, 2012: Convection and rapid filamentation in Typhoon Sinlaku during TCS-08/T-PARC. Mon. Wea. Rev., 140, 28062817, https://doi.org/10.1175/MWR-D-11-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 348 pp.

    • Crossref
    • Export Citation
  • Lentink, H. S., 2017: Mechanisms determining structural changes during the extratropical transition of Typhoon Sinlaku (2008): A modelling study. Ph.D. thesis, Karlsruhe Institute of Technology, 203 pp., https://publikationen.bibliothek.kit.edu/1000074107.

  • Li, Y., K. K. W. Cheung, and J. C. L. Chan, 2014: Numerical study on the development of asymmetric convection and vertical wind shear during tropical cyclone landfall. Quart. J. Roy. Meteor. Soc., 140, 18661877, https://doi.org/10.1002/qj.2259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., K. K. W. Cheung, and J. C. L. Chan, 2015: Modelling the effects of land–sea contrast on tropical cyclone precipitation under environmental vertical wind shear. Quart. J. Roy. Meteor. Soc., 141, 396412, https://doi.org/10.1002/qj.2359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 18491866, https://doi.org/10.1175/JAS3439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Structural characteristics of T-PARC Typhoon Sinlaku during its extratropical transition. Mon. Wea. Rev., 142, 19451961, https://doi.org/10.1175/MWR-D-13-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, https://doi.org/10.5194/acp-13-327-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2001: Simulations of the transformation stage of the extratropical transition of tropical cyclones. Mon. Wea. Rev., 129, 14621480, https://doi.org/10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., 2010: The re-intensification of Typhoon Sinlaku (2008). Ph.D. thesis, Naval Postgraduate School, 233 pp., http://hdl.handle.net/10945/10534.

  • Schneider, L., C. Barthlott, A. I. Barrett, and C. Hoose, 2018: The precipitation response to variable terrain forcing over low mountain ranges in different weather regimes. Quart. J. Roy. Meteor. Soc., 144, 970989, https://doi.org/10.1002/qj.3250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1993: A diagnostic study of the extratropical precipitation resulting from Tropical Cyclone Bola. Mon. Wea. Rev., 121, 26902707, https://doi.org/10.1175/1520-0493(1993)121<2690:ADSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool— Version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srock, A. F., and L. F. Bosart, 2009: Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling Tropical Storm Marco (1990). Mon. Wea. Rev., 137, 24482470, https://doi.org/10.1175/2009MWR2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, https://doi.org/10.1007/s00703-001-0592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. C., and J. C. L. Chan, 2010: Structural changes of a tropical cyclone during landfall: β-plane simulations. Adv. Atmos. Sci., 27, 11431150, https://doi.org/10.1007/s00376-009-9136-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 15781589, https://doi.org/10.1002/qj.2240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2006: Tropical cyclone motion in response to land surface friction. J. Atmos. Sci., 63, 13241337, https://doi.org/10.1175/JAS3683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 30323050, https://doi.org/10.1175/JAS-D-14-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933212, https://doi.org/10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2371 1151 27
PDF Downloads 541 134 5