Insights into the Summer Diurnal Cycle over Eastern South Africa

Shunya Koseki Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Shunya Koseki in
Current site
Google Scholar
PubMed
Close
,
Benjamin Pohl Centre de Recherches de Climatologie, UMR6282, Biogéosciences, CNRS, and Université de Bourgogne Franche-Comté, Dijon, France

Search for other papers by Benjamin Pohl in
Current site
Google Scholar
PubMed
Close
,
Bhuwan Chandra Bhatt Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Bhuwan Chandra Bhatt in
Current site
Google Scholar
PubMed
Close
,
Noel Keenlyside Geophysical Institute, University of Bergen, and Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Noel Keenlyside in
Current site
Google Scholar
PubMed
Close
, and
Arielle Stela Nkwinkwa Njouodo Department of Oceanography, MARE Institute, and Nansen-Tutu Centre for Marine Environmental Research, University of Cape Town, Cape Town, South Africa

Search for other papers by Arielle Stela Nkwinkwa Njouodo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Adopting a state-of-the-art numerical model system, we investigate how the diurnal variations in precipitation and local breeze systems are characterized by lower-boundary conditions related to the Drakensberg highland and warm SST associated with the Agulhas Current. A control simulation can simulate the hydrometeorological climates in the region realistically, but the terrestrial rainfall is overestimated. During daytime, the precipitation is confined to the Drakensberg highland, and there is an onshore local breeze, while during midnight to morning, the rainfall is confined to the Agulhas Current, and the breeze is offshore. These variations are captured by the numerical simulation, although the timing of maximum rainfall is early over the land and delayed over the ocean. The sensitivity experiment in which the Drakensberg is absent shows a drastic modification in the diurnal variations over land and ocean. The terrestrial precipitation is largely decreased around the Drakensberg and is largest along the coast during daytime. The nocturnal marine precipitation along the Agulhas Current is also reduced. Although the daily residual breeze is still pronounced even without the Drakensberg, wind speed is weakened. We attribute this to the reduction of precipitation. In another sensitivity experiment with smoothened warm SST due to the Agulhas Current, the amplitudes of diurnal variations are not modified remarkably, but the coastal rainfall is diminished to some extent due to less evaporation along the Agulhas Current. This study concludes that the Drakensberg plays a crucial role for the diurnal cycle, and the impact of the Agulhas Current is limited on the diurnal cycle of the coastal precipitation in this region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0184.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shunya Koseki, shunya.koseki@gfi.uib.no

Abstract

Adopting a state-of-the-art numerical model system, we investigate how the diurnal variations in precipitation and local breeze systems are characterized by lower-boundary conditions related to the Drakensberg highland and warm SST associated with the Agulhas Current. A control simulation can simulate the hydrometeorological climates in the region realistically, but the terrestrial rainfall is overestimated. During daytime, the precipitation is confined to the Drakensberg highland, and there is an onshore local breeze, while during midnight to morning, the rainfall is confined to the Agulhas Current, and the breeze is offshore. These variations are captured by the numerical simulation, although the timing of maximum rainfall is early over the land and delayed over the ocean. The sensitivity experiment in which the Drakensberg is absent shows a drastic modification in the diurnal variations over land and ocean. The terrestrial precipitation is largely decreased around the Drakensberg and is largest along the coast during daytime. The nocturnal marine precipitation along the Agulhas Current is also reduced. Although the daily residual breeze is still pronounced even without the Drakensberg, wind speed is weakened. We attribute this to the reduction of precipitation. In another sensitivity experiment with smoothened warm SST due to the Agulhas Current, the amplitudes of diurnal variations are not modified remarkably, but the coastal rainfall is diminished to some extent due to less evaporation along the Agulhas Current. This study concludes that the Drakensberg plays a crucial role for the diurnal cycle, and the impact of the Agulhas Current is limited on the diurnal cycle of the coastal precipitation in this region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0184.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shunya Koseki, shunya.koseki@gfi.uib.no

Supplementary Materials

    • Supplemental Materials (PDF 532.53 KB)
Save
  • Backeberg, B. C., L. Bertino, and J. A. Johannessen, 2009: Evaluating two numerical advection schemes in HYCOM for eddy-resolving modelling of the Agulhas Current. Ocean Sci., 5, 173190, https://doi.org/10.5194/os-5-173-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, B. C., S. Sobolowski, and A. Higuchi, 2016: Simulation of diurnal rainfall variability over the Maritime Continent with a high-resolution regional climate model. J. Meteor. Soc. Japan, 94A, 89103, https://doi.org/10.2151/jmsj.2015-052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boebel, O., J. Lutjeharms, C. Schmid, W. Zenk, T. Rossby, and C. Barron, 2003: The Cape cauldron: A regime of turbulent inter-ocean exchange. Deep-Sea Res. II, 50, 5786, https://doi.org/10.1016/S0967-0645(02)00379-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713, https://doi.org/10.1175/JAM2463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2000: The South Indian convergence zone and interannual rainfall variability over southern Africa. J. Climate, 13, 37893804, https://doi.org/10.1175/1520-0442(2000)013<3789:TSICZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, 8845, https://doi.org/10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., C. Macron, B. Pohl, and Y. Richard, 2011: Quantifying internal variability in a regional climate model: A case study for southern Africa. Climate Dyn., 37, 13351356, https://doi.org/10.1007/s00382-011-1021-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., 1962: The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244250, https://doi.org/10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gergis, J., and B. J. Henley, 2017: Southern Hemisphere rainfall variability over the past 200 years. Climate Dyn., 48, 20872105, https://doi.org/10.1007/s00382-016-3191-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics scheme (WSM6). J. Kor. Meteor. Soc., 42, 129151.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, B., B. C. Bhatt, T.-Y. Koh, and S. Chen, 2008: Sea breeze simulation over the Malay Peninsula in an intermonsoon period. J. Geophys. Res., 113, D20122, https://doi.org/10.1029/2008JD010319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., H. R. Valentine, and J. R. Lutjeharms, 1993: Influence of the Agulhas Current on summer rainfall along the southeast coast of South Africa. J. Appl. Meteor., 32, 12821287, https://doi.org/10.1175/1520-0450(1993)032<1282:IOTACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koseki, S., and T. Demissie, 2018: Does the Drakensberg dehydrate southwestern Africa? J. Arid Environ., 158, 3542, https://doi.org/10.1016/j.jaridenv.2018.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koseki, S., T.-Y. Koh, and C.-K. Teo, 2013: Effects of the cold tongue in the South China Sea on the monsoon, diurnal cycle and rainfall in the Maritime Continent. Quart. J. Roy. Meteor. Soc., 139, 15661582, https://doi.org/10.1002/qj.2052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawal, K. A., D. A. Stone, T. Aina, C. Rye, and B. J. Abiodun, 2015: Trends in the potential spread of seasonal and climate simulations over South Africa. Int. J. Climatol., 35, 21932209, https://doi.org/10.1002/joc.4234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., I. Diallo, C. Y. Xu, and F. Stordal, 2015: Hydrological projections under climate change in the near future by RegCM4 in southern Africa using a large-scale hydrological model. J. Hydrol., 528, 116, https://doi.org/10.1016/j.jhydrol.2015.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., R. D. Mey, and I. T. Hunter, 1986: Cloud lines over the Agulhas Current. S. Afr. J. Sci., 82, 635640.

  • MacKella, N., M. New, and C. Jack, 2014: Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci., 110, 113, https://doi.org/10.1590/sajs.2014/20130353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2017: A land data assimilation system for sub-Saharn Africa flood and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., C. Broderick, C. L. Bruyère, F. J. Mulligan, and A. F. Prein, 2017: Clustering of observed diurnal cycles of precipitation over the United States for evaluation of a WRF multiphysics regional climate ensemble. J. Climate, 30, 92679286, https://doi.org/10.1175/JCLI-D-16-0851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, https://doi.org/10.1175/JCLI-D-11-00375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 51855193, https://doi.org/10.1029/2018GL077042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., Y. Richard, and N. Fauchereau, 2007: Influence of the Madden–Julian oscillation on southern African summer rainfall. J. Climate, 20, 42274242, https://doi.org/10.1175/JCLI4231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., M. Rouault, and S. S. Roy, 2014: Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model. Climate Dyn., 43, 22072226, https://doi.org/10.1007/s00382-013-2046-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, S. F., E. J. Dawson, and D. M. W. Frierson, 2017: Southern African orography impacts on low clouds and the Atlantic ITCZ in a coupled model. Geophys. Res. Lett., 44, 32833289, https://doi.org/10.1002/2017GL073098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preston-Whyte, R. A., 1970a: Land breezes and rainfall on the Natal Coast. S. Afr. Geogr. J., 52, 3843, https://doi.org/10.1080/03736245.1970.10559463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preston-Whyte, R. A., 1970b: Local atmospheric circulations and the mesoclimate of Durban. Ph.D. thesis, University of Natal, 237 pp., https://researchspace.ukzn.ac.za/xmlui/handle/10413/5463.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2004: Orographic influences on the annual cycle of Namibian stratocumulus clouds. Geophys. Res. Lett., 31, L24108, https://doi.org/10.1029/2004GL020814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., S. S. Roy, and R. C. Balling Jr., 2013: The diurnal cycle of rainfall in South Africa in the austral summer. Int. J. Climatol., 33, 770777, https://doi.org/10.1002/joc.3451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Teo, C.-K., T.-Y. Koh, J. C.-F. Lo, and B. C. Bhatt, 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 46624675, https://doi.org/10.1175/2011JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., 1968a: Nocturnal local winds in a Drakensberg valley. S. Afr. Geogr. J., 50, 1532, https://doi.org/10.1080/03736245.1968.10559428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., 1968b: A note on the nomenclature of the topographically-induced local winds of Natal. S. Afr. Geogr. J., 50, 133134, https://doi.org/10.1080/03736245.1968.10559429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., and R. A. Preston-Whyte, 1972: Observations of regional topographically-induced wind systems in Natal. J. Appl. Meteor., 11, 643650, https://doi.org/10.1175/1520-0450(1972)011<0643:OORTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, C. J., 1999: An analytic model of the Agulhas Current as a western boundary current with linearly varying viscosity. J. Phys. Oceanogr., 29, 15171527, https://doi.org/10.1175/1520-0485(1999)029<1517:AAMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanism for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, https://doi.org/10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 323 78 16
PDF Downloads 305 61 17