A Background Investigation of Tornado Activity across the Southern Cumberland Plateau Terrain System of Northeastern Alabama

Anthony W. Lyza Department of Atmospheric Science, Severe Weather Institute–Radar and Lightning Laboratories, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Anthony W. Lyza in
Current site
Google Scholar
PubMed
Close
and
Kevin R. Knupp Department of Atmospheric Science, Severe Weather Institute–Radar and Lightning Laboratories, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kevin R. Knupp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of terrain on tornadoes are poorly understood. Efforts to understand terrain effects on tornadoes have been limited in scope, typically examining a small number of cases with limited observations or idealized numerical simulations. This study evaluates an apparent tornado activity maximum across the Sand Mountain and Lookout Mountain plateaus of northeastern Alabama. These plateaus, separated by the narrow Wills Valley, span ~5000 km2 and were impacted by 79 tornadoes from 1992 to 2016. This area represents a relative regional statistical maximum in tornadogenesis, with a particular tendency for tornadogenesis on the northwestern side of Sand Mountain. This exploratory paper investigates storm behavior and possible physical explanations for this density of tornadogenesis events and tornadoes. Long-term surface observation datasets indicate that surface winds tend to be stronger and more backed atop Sand Mountain than over the adjacent Tennessee Valley, potentially indicative of changes in the low-level wind profile supportive to storm rotation. The surface data additionally indicate potentially lower lifting condensation levels over the plateaus versus the adjacent valleys, an attribute previously shown to be favorable for tornadogenesis. Rapid Update Cycle and Rapid Refresh model output indicate that Froude numbers for the plateaus in tornadic environments are likely supportive of enhanced low-level flow over the plateaus, which further indicates the potential for favorable wind profile changes for tornado production. Examples of tornadic storms rapidly acquiring increased low-level rotation while reaching the plateaus of northeast Alabama are presented. The use of this background to inform the VORTEX-SE 2017 field campaign is discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony W. Lyza, lyzaa@nsstc.uah.edu

Abstract

The effects of terrain on tornadoes are poorly understood. Efforts to understand terrain effects on tornadoes have been limited in scope, typically examining a small number of cases with limited observations or idealized numerical simulations. This study evaluates an apparent tornado activity maximum across the Sand Mountain and Lookout Mountain plateaus of northeastern Alabama. These plateaus, separated by the narrow Wills Valley, span ~5000 km2 and were impacted by 79 tornadoes from 1992 to 2016. This area represents a relative regional statistical maximum in tornadogenesis, with a particular tendency for tornadogenesis on the northwestern side of Sand Mountain. This exploratory paper investigates storm behavior and possible physical explanations for this density of tornadogenesis events and tornadoes. Long-term surface observation datasets indicate that surface winds tend to be stronger and more backed atop Sand Mountain than over the adjacent Tennessee Valley, potentially indicative of changes in the low-level wind profile supportive to storm rotation. The surface data additionally indicate potentially lower lifting condensation levels over the plateaus versus the adjacent valleys, an attribute previously shown to be favorable for tornadogenesis. Rapid Update Cycle and Rapid Refresh model output indicate that Froude numbers for the plateaus in tornadic environments are likely supportive of enhanced low-level flow over the plateaus, which further indicates the potential for favorable wind profile changes for tornado production. Examples of tornadic storms rapidly acquiring increased low-level rotation while reaching the plateaus of northeast Alabama are presented. The use of this background to inform the VORTEX-SE 2017 field campaign is discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony W. Lyza, lyzaa@nsstc.uah.edu
Save
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 15141532, https://doi.org/10.1175/2008MWR2650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2000: A tornadic supercell over elevated, complex terrain: The Divide, Colorado, storm of 12 July 1996. Mon. Wea. Rev., 128, 795809, https://doi.org/10.1175/1520-0493(2000)128<0795:ATSOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. B. Houser, M. M. French, J. C. Snyder, G. D. Emmitt, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302325, https://doi.org/10.1175/JTECH-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922, https://doi.org/10.1175/WAF957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and J. P. Monteverdi, 1991: An analysis of a mesocyclone–induced tornado occurrence in Northern California. Wea. Forecasting, 6, 1331, https://doi.org/10.1175/1520-0434(1991)006<0013:AAOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desrochers, P. R., and F. I. Harris, 1996: Interpretation of mesocyclone vorticity and divergence structure from single-Doppler radar. J. Appl. Meteor., 35, 21912209, https://doi.org/10.1175/1520-0450(1996)035<2191:IOMVAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, https://doi.org/10.1175/2010BAMS3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2014: My version of tornado myths. http://www.flame.org/~cdoswell/Tornado_Mythology.html.

  • Forbes, G. S., 1998: Topographic influences on tornadoes in Pennsylvania. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 269–272.

  • Fujita, T. T., 1989: The Teton-Yellowstone tornado of 21 July 1987. Mon. Wea. Rev., 117, 19131940, https://doi.org/10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., and S. S. Parker, 2006: A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region. Wea. Forecasting, 21, 735751, https://doi.org/10.1175/WAF951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., T. Andretta, S. Luberda, J. Vogt, Y. Wang, L. D. Oolman, J. Finch, and D. Bikos, 2009: A case study of a long-lived tornadic mesocyclone in a low-CAPE complex-terrain environment. Electron. J. Severe Storms Meteor., 4 (3), 129.

    • Search Google Scholar
    • Export Citation
  • Getis, A., and J. K. Ord, 1992: The analysis of spatial association by use of distance statistics. Geogr. Anal., 24, 189206, https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and K. R. Knupp, 1993: Tornadogenesis via squall line and supercell interaction: The November 15, 1989, Huntsville, Alabama, tornado. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 183–199.

    • Crossref
    • Export Citation
  • Houser, J. B., K. M. Butler, and N. McGinnis, 2017: Correlations between topography and land cover with tornado intensity using rapid-scan mobile and WSR-88D radar observations in a geographic information system framework. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., KS10.1, https://ams.confex.com/ams/38RADAR/webprogram/Paper320671.html.

  • Karstens, C. D., W. A. Gallus Jr., B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree fall using aerial photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, https://doi.org/10.1175/JAMC-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, https://doi.org/10.1175/2009WAF2222294.1.

  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaPenta, K. D., L. F. Bosart, T. J. Galarneau, and M. J. Dickinson, 2005: A multiscale examination of the 31 May 1998 Mechanicville, New York, tornado. Wea. Forecasting, 20, 494516, https://doi.org/10.1175/WAF875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. W., 2012: Effects of topography on tornado dynamics: A simulation study. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 4B.1, https://ams.confex.com/ams/26SLS/webprogram/Paper211460.html.

  • Lewellen, D. W., and W. S. Lewellen, 2007: Near-surface vortex intensification through corner flow collapse. J. Atmos. Sci., 64, 21952209, https://doi.org/10.1175/JAS3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, https://doi.org/10.1016/j.atmosres.2010.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., J. R. McDonald, and G. S. Forbes, 2004: The Enhanced Fujita (EF) scale. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 3B.2, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81090.htm.

  • McDonald, L., 2014: Tornadoes in the Boston Mountains of northern Arkansas. TheWeatherPrediction.com, http://theweatherprediction.com/weatherpapers/103/index.html.

  • MoDOT, 2018: Automated weather observing system. Missouri Department of Transportation, https://www.modot.org/automated-weather-observing-system.

  • Monteverdi, J. P., R. Edwards, and G. J. Stumpf, 2014: An analysis of the 7 July 2004 Rockwell Pass, California, tornado: Highest-elevation tornado documented in the United States. Mon. Wea. Rev., 142, 39253943, https://doi.org/10.1175/MWR-D-14-00222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2018: Storm Data. NOAA/NCEI, https://www.ncdc.noaa.gov/IPS/sd/sd.html.

  • Nuss, W. A., 1986: Observations of a mountain tornado. Mon. Wea. Rev., 114, 233237, https://doi.org/10.1175/1520-0493(1986)114<0233:OOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique collaboration in research, education, and technology transfer. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96524.htm.

  • Rankine, W. J. M., 1901: A Manual of Applied Mechanics. 16th ed. Charles Griffin and Company, 680 pp.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191, https://doi.org/10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. G., 2009: The impact of terrain on three cases of tornadogenesis in the Great Tennessee Valley. Electron. J. Operational Meteor., 10 (11), 133.

    • Search Google Scholar
    • Export Citation
  • Shamburger, S. W., 2012: Higher terrain impacts of eastern middle Tennessee on tornadogenesis. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 9, https://ams.confex.com/ams/26SLS/webprogram/Paper211577.html.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Ventura, V., C. J. Paciorek, and J. S. Risbey, 2004: Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate, 17, 43434356, https://doi.org/10.1175/3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., S. D. Mobbs, and B. A. Gardiner, 2002: Measurements of the near-surface flow over a hill. Quart. J. Roy. Meteor. Soc., 128, 22572280, https://doi.org/10.1256/qj.01.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241, https://doi.org/10.1175/2008MWR2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 16691682, https://doi.org/10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1436 241 29
PDF Downloads 1097 187 18