• Ades, M., and P. van Leeuwen, 2013: An exploration of the equivalent weights particle filter. Quart. J. Roy. Meteor. Soc., 139, 820840, https://doi.org/10.1002/qj.1995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ait-El-Fquih, B., and F. Desbouvries, 2006: Kalman filtering in triplet Markov chains. IEEE Trans. Signal Process., 54, 29572963, https://doi.org/10.1109/TSP.2006.877651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ait-El-Fquih, B., and F. Desbouvries, 2011: Fixed-interval Kalman smoothing algorithms in singular state-space systems. J. Signal Process. Syst. Signal Image Video Technol., 65, 469478, https://doi.org/10.1007/s11265-010-0532-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ait-El-Fquih, B., and I. Hoteit, 2015: An efficient multiple particle filter based on the variational Bayesian approach. Proc. IEEE Int. Symp. on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, United Arab Emirates, IEEE, https://doi.org/10.1109/ISSPIT.2015.7394338.

    • Crossref
    • Export Citation
  • Ait-El-Fquih, B., and I. Hoteit, 2016: A variational Bayesian multiple particle filtering scheme for large-dimensional systems. IEEE Trans. Signal Process., 64, 54095422, https://doi.org/10.1109/TSP.2016.2580524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ait-El-Fquih, B., M. Gharamti, and I. Hoteit, 2016: A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology. Hydrol. Earth Syst. Sci., 20, 32893307, https://doi.org/10.5194/hess-20-3289-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., F. Zhang, and J. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. D. O., and J. B. Moore, 1979: Optimal Filtering. Prentice Hall, 368 pp.

  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12, 363371, https://doi.org/10.5194/npg-12-363-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellsky, T., J. Berwald, and L. Mitchell, 2014: Nonglobal parameter estimation using local ensemble Kalman filtering. Mon. Wea. Rev., 142, 21502164, https://doi.org/10.1175/MWR-D-13-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, Eds.,Vol. 2, Institute of Mathematical Statistics, 316–334, https://doi.org/10.1214/193940307000000518.

    • Crossref
    • Export Citation
  • Bishop, C., B. Etherton, and S. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrassi, A., and S. Vannitsem, 2011: Parameter estimation using a particle method: Inference mixing coefficients from sea-level observations. Quart. J. Roy. Meteor. Soc., 137, 435451, https://doi.org/10.1002/qj.762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and D. Zhang, 2006: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Resour., 29, 11071122, https://doi.org/10.1016/j.advwatres.2005.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crisan, D., and A. Doucet, 2002: A survey on convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process., 50, 736746, https://doi.org/10.1109/78.984773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbouvries, F., and B. Ait-El-Fquih, 2008: Direct, prediction-based and smoothing-based particle filter algorithms. Proc. Fourth World Conf. of the IASC, Yokohama, Japan, IASC, 384–393.

  • Desbouvries, F., Y. Petetin, and B. Ait-El-Fquih, 2011: Direct, prediction- and smoothing-based Kalman and particle filter algorithms. Signal Process., 91, 20642077, https://doi.org/10.1016/j.sigpro.2011.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djuric, P., and M. Bugallo, 2013: Particle filtering for high-dimensional systems. Proc. IEEE Fifth Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Martin, France, IEEE, https://doi.org/10.1109/CAMSAP.2013.6714080.

    • Crossref
    • Export Citation
  • Doucet, A., N. de Freitas, K. P. Murphy, and S. J. Russell, 2000: Rao-Blackwellised particle filtering for dynamic Bayesian networks. Proc. 16th World Conf. on Uncertainty in Artificial Intelligence, Stanford, CA, AUAI, 176–183.

  • Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001a: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 582 pp., https://doi.org/10.1007/978-1-4757-3437-9.

    • Crossref
    • Export Citation
  • Doucet, A., N. J. Gordon, and V. Krishnamurthy, 2001b: Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process., 49, 613624, https://doi.org/10.1109/78.905890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, S., D. Entekhabi, and E. Njoku, 2007: Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the ensemble Kalman smoother. IEEE Trans. Geosci. Remote Sens., 45, 10161028, https://doi.org/10.1109/TGRS.2006.890561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2006: Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp.

  • Evensen, G., and P. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 18521867, https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. Künsch, 2012: Sequential state and observation noise covariance estimation using combined ensemble Kalman and particle filters. Mon. Wea. Rev., 140, 14761495, https://doi.org/10.1175/MWR-D-10-05088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013: Mixture ensemble Kalman filters. Comput. Stat. Data Anal., 58, 127138, https://doi.org/10.1016/j.csda.2011.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghahramani, Z., and M. Jordan, 1997: Factorial hidden Markov models. Mach. Learn., 29, 245273, https://doi.org/10.1023/A:1007425814087.

  • Gharamti, M. E., J. Valstar, and I. Hoteit, 2014: An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models. Adv. Water Resour., 71, 115, https://doi.org/10.1016/j.advwatres.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gharamti, M. E., B. Ait-El-Fquih, and I. Hoteit, 2015: An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models. J. Hydrol., 527, 442457, https://doi.org/10.1016/j.jhydrol.2015.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/ non-Gaussian Bayesian state estimation. IEE Proc. F, 140, 107113.

    • Search Google Scholar
    • Export Citation
  • Guimaraes, A., B. Ait-El-Fquih, and F. Desbouvries, 2010: A fixed-lag particle smoother for blind SISO equalization of time-varying channels. IEEE Trans. Wireless Commun., 9, 512516, https://doi.org/10.1109/TWC.2010.02.081694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2011: What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon. Wea. Rev., 139, 117131, https://doi.org/10.1175/2010MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks Franssen, H., and W. Kinzelbach, 2008: Real-time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resour. Res., 44, W09408, https://doi.org/10.1029/2007WR006505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, Y., and E. Ribak, 1991: Constrained realizations of Gaussian fields—A simple algorithm. Astrophys. J., 380, L5L8, https://doi.org/10.1086/186160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J. Mar. Syst., 36, 101127, https://doi.org/10.1016/S0924-7963(02)00129-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317334, https://doi.org/10.1175/2007MWR1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, https://doi.org/10.1175/2011MWR3640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, M. Gharamti, and X. Luo, 2015: Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon. Wea. Rev., 143, 29182936, https://doi.org/10.1175/MWR-D-14-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husz, Z. L., A. M. Wallace, and P. R. Green, 2011: Tracking with a hierarchical partitioned particle filter and movement modelling. IEEE Trans. Syst. Man Cybern., 41B, 15711584, https://doi.org/10.1109/TSMCB.2011.2157680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Vol. 64, Mathematics in Science and Engineering, Academic Press, 400 pp.

  • Kailath, T., A. H. Sayed, and B. Hassibi, 2000: Linear Estimation. Pearson, 854 pp.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME–J. Basic Eng., 82D, 3545.

  • Karimi, A., and M. R. Paul, 2010: Extensive chaos in the Lorenz-96 model. Chaos, 20, 043105, https://doi.org/10.1063/1.3496397.

  • Kivman, G. A., 2003: Sequential parameter estimation for stochastic systems. Nonlinear Processes Geophys., 10, 253259, https://doi.org/10.5194/npg-10-253-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Künsch, H., 2001: State space and hidden Markov models. Complex Stochastic Systems, O. E. Barndorff-Nielsen, D. R. Cox, and C. Klüppelberg, Eds., CRC Press, 109–173.

  • Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. Wea. Rev., 144, 781800, https://doi.org/10.1175/MWR-D-14-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. S., and R. Chen, 1998: Sequential Monte Carlo methods for dynamic systems. J. Amer. Stat. Assoc., 93, 10321044, https://doi.org/10.1080/01621459.1998.10473765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2014: Ensemble Kalman filtering with a divided state-space strategy for coupled data assimilation problems. Mon. Wea. Rev., 142, 45424558, https://doi.org/10.1175/MWR-D-13-00402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser, 2005: Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28, 135147, https://doi.org/10.1016/j.advwatres.2004.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morzfeld, M., X. Tu, E. Atkins, and A. Chorin, 2012: A random map implementation of implicit filters. J. Comput. Phys., 231, 20492066, https://doi.org/10.1016/j.jcp.2011.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, J., H. Madsen, K. H. Jensen, and J. C. Refsgaard, 2015: Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: Evaluating the effect of ensemble size and localization on filter performance. Hydrol. Earth Syst. Sci., 19, 29993013, https://doi.org/10.5194/hess-19-2999-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, C., 2007: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer Science & Business Media, 606 pp., https://doi.org/10.1007/0-387-71599-1.

    • Crossref
    • Export Citation
  • Rubin, D., 1988: Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics, J. Bernardo et al., Eds., Vol. 3, Oxford University Press, 395–402.

  • Santitissadeekorn, N., and C. Jones, 2015: Two-stage filtering for joint state-parameter estimation. Mon. Wea. Rev., 143, 20282041, https://doi.org/10.1175/MWR-D-14-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schön, T., F. Gustafsson, and P.-J. Nordlund, 2005: Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process., 53, 22792289, https://doi.org/10.1109/TSP.2005.849151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Septier, F., and G. W. Peters, 2015: An overview of recent advances in Monte-Carlo methods for Bayesian filtering in high-dimensional spaces. Theoretical Aspects of Spatial-Temporal Modeling, G. W. Peters and T. Matsui, Eds., Springer, 31–61, https://doi.org/10.1007/978-4-431-55336-6_2.

    • Crossref
    • Export Citation
  • Shen, Z., and Y. Tang, 2015: A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions. J. Adv. Model. Earth Syst., 7, 5066, https://doi.org/10.1002/2014MS000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L., E. Spiller, A. Apte, and B. Sandstede, 2015: A hybrid particle-ensemble Kalman filter for Lagrangian data assimilation. Mon. Wea. Rev., 143, 195211, https://doi.org/10.1175/MWR-D-14-00051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, https://doi.org/10.1175/2008MWR2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., I. Hoteit, B. Cornuelle, and A. Subramanian, 2010: An adaptive approach to mitigate background covariance limitations in the ensemble Kalman filter. Mon. Wea. Rev., 138, 28252845, https://doi.org/10.1175/2010MWR2871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiller, E. T., A. Budhiraja, K. Ide, and C. K. R. T. Jones, 2008: Modified particle filter methods for assimilating Lagrangian data into a point-vortex model. Physica D, 237, 14981506, https://doi.org/10.1016/j.physd.2008.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stordal, A. S., H. A. Karlsen, G. Naevdal, H. J. Skaug, and B. Valles, 2011: Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter. Comput. Geosci., 15, 293305, https://doi.org/10.1007/s10596-010-9207-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subramanian, A., I. Hoteit, B. Cornuelle, and H. Song, 2012: Linear vs. nonlinear filtering with scale selective corrections for balanced dynamics in a simple atmospheric model. J. Atmos. Sci., 69, 34053419, https://doi.org/10.1175/JAS-D-11-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M., J. Anderson, C. Bishop, T. Hamill, and J. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, https://doi.org/10.1175/2009MWR2835.1.

  • van Trees, H., 1968: Detection, Estimation, and Modulation Theory: Part I. John Wiley and Sons, 716 pp.

  • Wen, X. H., and W. H. Chen, 2007: Real-time reservoir updating using ensemble Kalman filter: The confirming approach. Soc. Petrol. Eng., 11, 431442.

    • Search Google Scholar
    • Export Citation
  • West, M., and J. Liu, 2001: Combined parameter and state estimation in simulation-based filtering. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer, 197–223.

    • Crossref
    • Export Citation
  • Zhang, H., H.-J. Hendricks Franssen, X. Han, J. Vrugt, and H. Vereecken, 2017: State and parameter estimation of two land surface models using the ensemble Kalman filter and particle filter. Hydrol. Earth Syst. Sci., 21, 49274958, https://doi.org/10.5194/hess-21-4927-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 23
PDF Downloads 88 88 24

An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle Filters

View More View Less
  • 1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
© Get Permissions
Restricted access

Abstract

This work addresses the state–parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters’ vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF–PF, the PF is first used to sample the parameters’ ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters’ ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles’ members, in contrast with the recently introduced two-stage EnKF–PF (TS–EnKF–PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS–EnKF–PF. Numerical results suggest that the EnKF–PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments.

Current affiliation: Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boujemaa Ait-El-Fquih, boujemaa.aitelfquih@kaust.edu.sa

Abstract

This work addresses the state–parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters’ vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF–PF, the PF is first used to sample the parameters’ ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters’ ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles’ members, in contrast with the recently introduced two-stage EnKF–PF (TS–EnKF–PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS–EnKF–PF. Numerical results suggest that the EnKF–PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments.

Current affiliation: Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boujemaa Ait-El-Fquih, boujemaa.aitelfquih@kaust.edu.sa
Save