Influence of the Size of Supertyphoon Megi (2010) on SST Cooling

Iam-Fei Pun Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Iam-Fei Pun in
Current site
Google Scholar
PubMed
Close
,
I.-I. Lin Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by I.-I. Lin in
Current site
Google Scholar
PubMed
Close
,
Chun-Chi Lien Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chi Lien in
Current site
Google Scholar
PubMed
Close
, and
Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chieh Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Supertyphoon Megi (2010) left behind two very contrasting SST cold-wake cooling patterns between the Philippine Sea (1.5°C) and the South China Sea (7°C). Based on various radii of radial winds, the authors found that the size of Megi doubles over the South China Sea when it curves northward. On average, the radius of maximum wind (RMW) increased from 18.8 km over the Philippine Sea to 43.1 km over the South China Sea; the radius of 64-kt (33 m s−1) typhoon-force wind (R64) increased from 52.6 to 119.7 km; the radius of 50-kt (25.7 m s−1) damaging-force wind (R50) increased from 91.8 to 210 km; and the radius of 34-kt (17.5 m s−1) gale-force wind (R34) increased from 162.3 to 358.5 km. To investigate the typhoon size effect, the authors conduct a series of numerical experiments on Megi-induced SST cooling by keeping other factors unchanged, that is, typhoon translation speed and ocean subsurface thermal structure. The results show that if it were not for Megi’s size increase over the South China Sea, the during-Megi SST cooling magnitude would have been 52% less (reduced from 4° to 1.9°C), the right bias in cooling would have been 60% (or 30 km) less, and the width of the cooling would have been 61% (or 52 km) less, suggesting that typhoon size is as important as other well-known factors on SST cooling. Aside from the size effect, the authors also conduct a straight-track experiment and find that the curvature of Megi contributes up to 30% (or 1.2°C) of cooling over the South China Sea.

Publisher's Note: This article was revised on 29 March 2018 to include the missing reference for Knaff et al. (2013) that was omitted when originally published.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Iam-Fei Pun, ipun@ncu.edu.tw

Abstract

Supertyphoon Megi (2010) left behind two very contrasting SST cold-wake cooling patterns between the Philippine Sea (1.5°C) and the South China Sea (7°C). Based on various radii of radial winds, the authors found that the size of Megi doubles over the South China Sea when it curves northward. On average, the radius of maximum wind (RMW) increased from 18.8 km over the Philippine Sea to 43.1 km over the South China Sea; the radius of 64-kt (33 m s−1) typhoon-force wind (R64) increased from 52.6 to 119.7 km; the radius of 50-kt (25.7 m s−1) damaging-force wind (R50) increased from 91.8 to 210 km; and the radius of 34-kt (17.5 m s−1) gale-force wind (R34) increased from 162.3 to 358.5 km. To investigate the typhoon size effect, the authors conduct a series of numerical experiments on Megi-induced SST cooling by keeping other factors unchanged, that is, typhoon translation speed and ocean subsurface thermal structure. The results show that if it were not for Megi’s size increase over the South China Sea, the during-Megi SST cooling magnitude would have been 52% less (reduced from 4° to 1.9°C), the right bias in cooling would have been 60% (or 30 km) less, and the width of the cooling would have been 61% (or 52 km) less, suggesting that typhoon size is as important as other well-known factors on SST cooling. Aside from the size effect, the authors also conduct a straight-track experiment and find that the curvature of Megi contributes up to 30% (or 1.2°C) of cooling over the South China Sea.

Publisher's Note: This article was revised on 29 March 2018 to include the missing reference for Knaff et al. (2013) that was omitted when originally published.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Iam-Fei Pun, ipun@ncu.edu.tw
Save
  • Balaguru, K., G. R. Foltz, L. R. Leung, E. D’Asaro, K. A. Emanuel, H. Liu, and S. E. Zedler, 2015: Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones. Geophys. Res. Lett., 42, 67396746, https://doi.org/10.1002/2015GL064822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, https://doi.org/10.1029/93JD02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, https://doi.org/10.1175/MWR-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, https://doi.org/10.1002/qj.2292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128135, https://doi.org/10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, https://doi.org/10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, and S. Majumdar, 2010: Validation of QuikSCAT wind vectors by dropwindsonde data from Dropwindsonde Observations for Typhoon Surveillance Near the Taiwan Region (DOTSTAR). J. Geophys. Res., 115, D02109, https://doi.org/10.1029/2009JD012131.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, https://doi.org/10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. Niiler, and E. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., and Coauthors, 2011: Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography, 24, 2431, https://doi.org/10.5670/oceanog.2011.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, https://doi.org/10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. S. Fraim, and R. N. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 11531162, https://doi.org/10.1029/JC081i006p01153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang, 2014: Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. J. Geophys. Res. Oceans, 119, 31343157, https://doi.org/10.1002/2013JC009661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, J., R. Lien, E. A. D’Asaro, and T. B. Sanford, 2017: Estimates of surface wind stress and drag coefficients in Typhoon Megi. J. Phys. Oceanogr., 47, 545565, https://doi.org/10.1175/JPO-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., J. Boucharel, I.-I. Lin, F.-F. Jin, C.-C. Lien, and I.-F. Pun, 2017: Air-sea fluxes for Hurricane Patricia (2015): Comparison with supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res. Oceans, 122, 60766089, https://doi.org/10.1002/2017JC012741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., I. I. Lin, C. Chou, and R. H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita in mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, https://doi.org/10.1175/2010JPO4309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and G. R. Halliwell, 2011: The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. J. Phys. Oceanogr., 41, 19651985, https://doi.org/10.1175/JPO-D-11-06.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper Oceanic Energy Response to Tropical Cyclone Passage. J. Climate, 26, 26312650, https://doi.org/10.1175/JCLI-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, D.-S., S.-Y. Chao, C.-C. Wu, and I.-I. Lin, 2014: Impacts of Typhoon Megi (2010) on the South China Sea. J. Geophys. Res. Oceans, 119, 44744489, https://doi.org/10.1002/2013JC009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, https://doi.org/10.1175/MWR-D-13-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., and J. C. L. Chan, 2015: Recent decrease in typhoon destructive potential and global warming implications. Nat. Commun., 6, 7182, https://doi.org/10.1038/ncomms8182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., W. T. Liu, C. C. Wu, J. C. H. Chiang, and C. H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1131, https://doi.org/10.1029/2002GL015674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., I. F. Pun, and C. C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, https://doi.org/10.1175/2009MWR2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., I. F. Pun, and C.-C. Lien, 2014: “Category-6” Supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, https://doi.org/10.1002/2014GL061281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publ. 96-17, 16 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970010322.pdf.

  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, https://doi.org/10.1029/2011GL050765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrvaljevic, R. K., and Coauthors, 2013: Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316321, https://doi.org/10.1029/2012GL054282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, https://doi.org/10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, https://doi.org/10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Pun, I. F., I. I. Lin, C. R. Wu, D. H. Ko, and W. T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Trans. Geosci. Remote Sens., 45, 16161630, https://doi.org/10.1109/TGRS.2007.895950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I. F., Y. T. Chang, I. I. Lin, T. Y. Tang, and R. C. Lien, 2011: Typhoon–ocean interaction in the western North Pacific: Part 2. Oceanography, 24, 3241, https://doi.org/10.5670/oceanog.2011.92.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I. F., I. I. Lin, and M. H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the western North Pacific Ocean. Geophys. Res. Lett., 40, 46804684, https://doi.org/10.1002/grl.50548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I. F., I. I. Lin, and D. S. Ko, 2014: New generation of satellite-derived ocean thermal structure for the western North Pacific typhoon intensity forecasting. Prog. Oceanogr., 121, 109124, https://doi.org/10.1016/j.pocean.2013.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I. F., J. F. Price, and S. R. Jayne, 2016: Satellite-derived ocean thermal structure for the North Atlantic hurricane season. Mon. Wea. Rev., 144, 877896, https://doi.org/10.1175/MWR-D-15-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., P. G. Black, J. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 20652083, https://doi.org/10.1175/1520-0485(1987)017<2065:ORTAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. Price, J. Girton, and D. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, https://doi.org/10.1029/2007GL029679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. Price, and J. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L., and K. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, https://doi.org/10.1029/92JC01586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., and Coauthors, 2010: The data management system for the Global Temperature and Salinity Profile Programme. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, https://doi.org/10.5270/OceanObs09.cwp.86.

    • Crossref
    • Export Citation
  • Sun, L., Y.-X. Li, Y.-J. Yang, Q. Wu, X.-T. Chen, Q.-Y. Li, Y.-B. Li, and T. Xian, 2014: Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data-based evaluation between 2000 and 2008. J. Geophys. Res. Oceans, 119, 55855598, https://doi.org/10.1002/2013JC009575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and L. K. Shay, 2012: Loop Current mixed layer response to Hurricane Lili (2002). Part I: Observations. J. Phys. Oceanogr., 42, 400419, https://doi.org/10.1175/JPO-D-11-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, https://doi.org/10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Wada, A., 2005: Numerical simulations of sea surface cooling by a mixed layer model during the passage of Typhoon Rex. J. Oceanogr., 61, 4157, https://doi.org/10.1007/s10872-005-0018-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, https://doi.org/10.1029/2005GL023716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, C. T. Pilley, M. Shannon, D. C. Herndon, I.-F. Pun, I.-I. Lin, and C. L. Gentemann, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett., 41, 75957601, https://doi.org/10.1002/2014GL061584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, H.-J. Cheng, and Y. Wang, 2003: Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys. Res. Lett., 30, 1887, https://doi.org/10.1029/2003GL017653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, https://doi.org/10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, https://doi.org/10.1175/MWR-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z.-W., I.-I. Lin, B. Wang, H.-C. Huang, and C.-H. Chen, 2015: A long neglected damper in the El Niño–typhoon relationship: A ‘Gaia-like’ process. Sci. Rep., 5, 11 103, https://doi.org/10.1038/srep11103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 677 284 18
PDF Downloads 424 110 18