• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, https://doi.org/10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2005: Statistical convergence in simulated moist absolutely unstable layers. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 1M.6, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96719.htm.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, https://doi.org/10.1007/s00162-012-0281-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso‐gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, https://doi.org/10.1002/qj.58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6ES9, https://doi.org/10.1175/2011BAMS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C. H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large‐eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1, 15, https://doi.org/10.3894/JAMES.2009.1.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., D.-B. Shin, and C. Kummerow, 2013: Impacts of a priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals. J. Atmos. Oceanic Technol., 30, 23672381, https://doi.org/10.1175/JTECH-D-12-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539, https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010: Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW–Noah modeling system. Part II: Structures from a few kilometers to 100 km across. Mon. Wea. Rev., 138, 745764, https://doi.org/10.1175/2009MWR3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, C. J., and S. C. van den Heever, 2014: Latent heating and mixing due to entrainment in tropical deep convection. J. Atmos. Sci., 71, 816832, https://doi.org/10.1175/JAS-D-13-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, https://doi.org/10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C., and M. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for warn-on-forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, https://doi.org/10.1175/BAMS-84-11-1547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., A. Seifert, and T. Heus, 2015: Fluctuations in a quasi-stationary shallow cumulus cloud ensemble. Nonlinear Processes Geophys., 22, 6585, https://doi.org/10.5194/npg-22-65-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., A. Seifert, and A. Dipankar, 2016: A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone. J. Adv. Model. Earth Syst., 8, 786812, https://doi.org/10.1002/2016MS000634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and et al. , 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toy, M. D., 2013: A supercell storm simulation using a nonhydrostatic cloud-resolving model based on a hybrid isentropic-sigma vertical coordinate. Mon. Wea. Rev., 141, 12041215, https://doi.org/10.1175/MWR-D-12-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. Stevens, 2000: Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large eddy simulation study. J. Atmos. Sci., 57, 423441, https://doi.org/10.1175/1520-0469(2000)057<0423:THROTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., and A. Arakawa, 2014: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci., 71, 20892103, https://doi.org/10.1175/JAS-D-13-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J. I., and R. Plant, 2012: Finite departure from convective quasi‐equilibrium: Periodic cycle and discharge–recharge mechanism. Quart. J. Roy. Meteor. Soc., 138, 626637, https://doi.org/10.1002/qj.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J. I., J. L. Redelsperger, P. Bechtold, and F. Guichard, 2005: Mode decomposition as a methodology for developing convective‐scale representations in global models. Quart. J. Roy. Meteor. Soc., 131, 23132336, https://doi.org/10.1256/qj.04.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2015: On the mass-flux representation of vertical transport in moist convection. J. Atmos. Sci., 72, 44454468, https://doi.org/10.1175/JAS-D-14-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 12
PDF Downloads 46 46 16

Comparison of the Vertical Distributions of Cloud Properties from Idealized Extratropical Deep Convection Simulations Using Various Horizontal Resolutions

View More View Less
  • 1 Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration, Shanghai, China
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration, Shanghai, China
© Get Permissions
Restricted access

ABSTRACT

The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baode Chen, baode@typhoon.org.cn

ABSTRACT

The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baode Chen, baode@typhoon.org.cn
Save