• Abatzoglou, J. T., and G. Magnusdottir, 2006: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19, 61396152, https://doi.org/10.1175/JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572, https://doi.org/10.1038/358570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, https://doi.org/10.1175/MWR-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A., D. Keyser, and L. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 20492068, https://doi.org/10.1175/MWR-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A., L. Bosart, and D. Keyser, 2017: Upper-tropospheric precursors to the formation of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 145, 503520, https://doi.org/10.1175/MWR-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and et al. , 2011: The ERA-Interim archive, version 2.0. ERA report series, Tech. Rep. 1, ECMWF, 23 pp.

  • Boettcher, M., and H. Wernli, 2011: Life cycle study of a diabatic Rossby wave as a precursor to rapid cyclogenesis in the North Atlantic—Dynamics and forecast performance. Mon. Wea. Rev., 139, 18611878, https://doi.org/10.1175/2011MWR3504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., and G. M. Lackmann, 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone. Mon. Wea. Rev., 133, 19131937, https://doi.org/10.1175/MWR2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2009: Horizontal potential vorticity dipoles on the convective storm scale. Quart. J. Roy. Meteor. Soc., 135, 13921408, https://doi.org/10.1002/qj.468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, https://doi.org/10.1175/JAS-D-14-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, https://doi.org/10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, https://doi.org/10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, https://doi.org/10.1175/JCLI-D-14-00552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: Documentation of a systematic bias in the aviation model’s forecast of the Atlantic tropical upper-tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10, 433446, https://doi.org/10.1175/1520-0434(1995)010<0433:DOASBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., B. Legras, A. Beljaars, J. J. Morcrette, A. Simmons, A. M. Tompkins, and S. Uppala, 2009: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 2137, https://doi.org/10.1002/qj.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funatsu, B. M., and D. W. Waugh, 2008: Connections between potential vorticity intrusions and convection in the eastern tropical Pacific. J. Atmos. Sci., 65, 9871002, https://doi.org/10.1175/2007JAS2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and M. McIntyre, 1987a: On the representation of Rossby wave critical layers and wave breaking in zonally truncated models. J. Atmos. Sci., 44, 23592382, https://doi.org/10.1175/1520-0469(1987)044<2359:OTRORW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and M. McIntyre, 1987b: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M., and A. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, https://doi.org/10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, https://doi.org/10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. E. Martin, 2005: Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quart. J. Roy. Meteor. Soc., 131, 23372365, https://doi.org/10.1256/qj.04.148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710, https://doi.org/10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 11791202, https://doi.org/10.1175/MWR-D-15-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., and C. Zhang, 2013: Diabatic heating profiles in recent global reanalyses. J. Climate, 26, 33073325, https://doi.org/10.1175/JCLI-D-12-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, L. Leung, D. Burrows, Q. Yang, K. Sakaguchi, and S. Hagos, 2015: Toward the dynamical convergence on the jet stream in aquaplanet AGCMs. J. Climate, 28, 67636782, https://doi.org/10.1175/JCLI-D-14-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., S. Limbach, C. Aebi, H. Joos, H. Wernli, and O. Martius, 2014: On the co-occurrence of warm conveyor belt outflows and PV streamers. J. Atmos. Sci., 71, 36683673, https://doi.org/10.1175/JAS-D-14-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley, 320 pp.

  • Martius, O., E. Zenklusen, C. Schwierz, and H. C. Davies, 2006: Episodes of Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 11491164, https://doi.org/10.1002/joc.1295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and et al. , 2013: The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 17801797, https://doi.org/10.1002/qj.2082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26, 45354549, https://doi.org/10.1175/JCLI-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828, https://doi.org/10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • Moore, R., and M. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude moist cyclogenesis. J. Atmos. Sci., 61, 754768, https://doi.org/10.1175/1520-0469(2004)061<0754:RTDOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023, https://doi.org/10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, https://doi.org/10.3402/tellusa.v47i5.11553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, https://doi.org/10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, and M. J. Reeder, 2014: The structure and evolution of heat waves in southeastern Australia. J. Climate, 27, 57685785, https://doi.org/10.1175/JCLI-D-13-00740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53, 30133031, https://doi.org/10.1175/1520-0469(1996)053<3013:IOBSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, S., 1956: Motion and Motion Systems. Vol. I, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Petterssen, S., and S. Smebye, 1971: On the development of extratropical storms. Quart. J. Roy. Meteor. Soc., 97, 457482, https://doi.org/10.1002/qj.49709741407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and J. G. Esler, 2007: Transport and mixing of chemical air masses in idealized baroclinic life cycles. J. Geophys. Res., 112, D23102, https://doi.org/10.1029/2007JD008555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D., and J. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W., and I. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, https://doi.org/10.1002/qj.2221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, https://doi.org/10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M., and et al. , 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, https://doi.org/10.1175/BAMS-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2015: On the role of inertial instability in stratosphere–troposphere exchange near midlatitude cyclones. J. Atmos. Sci., 72, 21312151, https://doi.org/10.1175/JAS-D-14-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, https://doi.org/10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., and B. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, https://doi.org/10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., O. Martius, and J. Arnold, 2013: Cold surge episodes over southeastern Brazil—A potential vorticity perspective. Int. J. Climatol., 33, 27582767, https://doi.org/10.1002/joc.3618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, https://doi.org/10.1175/2008JAS2632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2009: The role of tropospheric Rossby wave breaking in the Pacific decadal oscillation. J. Climate, 22, 18191833, https://doi.org/10.1175/2008JCLI2593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76, 189217, https://doi.org/10.1002/qj.49707632809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, E. T., and D. M. Straus, 2017: Rossby wave breaking and transient eddy forcing during Euro-Atlantic circulation regimes. J. Atmos. Sci., 74, 17351755, https://doi.org/10.1175/JAS-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity–potential temperature framework. J. Atmos. Sci., 73, 10631081, https://doi.org/10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., and B. J. Hoskins, 2008: The morphology of Northern Hemisphere blocking. J. Atmos. Sci., 65, 16531665, https://doi.org/10.1175/2007JAS2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., Ed., 2017: Planetary waves and zonal asymmetries. Atmospheric and Oceanic Fluid Mechanics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 585–626.

    • Crossref
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 38573860, https://doi.org/10.1029/2000GL012250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, https://doi.org/10.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889908, https://doi.org/10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiegand, L., and P. Knippertz, 2014: Equatorward breaking Rossby waves over the North Atlantic and Mediterranean region in the ECMWF operational Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 140, 5871, https://doi.org/10.1002/qj.2112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., and S. Fueglistaler, 2013: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere. Atmos. Chem. Phys., 13, 95659576, https://doi.org/10.5194/acp-13-9565-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, https://doi.org/10.1175/JAS4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, https://doi.org/10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, M. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 19
PDF Downloads 96 96 22

North Atlantic Extratropical Rossby Wave Breaking during the Warm Season: Wave Life Cycle and Role of Diabatic Heating

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

This study investigates the life cycle of anticyclonic Rossby wave breaking during the extended warm season (July–October) over the North Atlantic basin. It was found that upper-tropospheric breaking waves are coupled with lower-level perturbations and can be traced back to a wave train that extends from the North Pacific. The overturning of potential vorticity (PV) contours during wave breaking is associated with the rapid development of an upper-level ridge, which occurs along the east coast of North America and over a warm and moist airstream. The ridge development is investigated using the PV budget analysis and trajectory analysis. The PV budget analysis suggests that the horizontal advection of PV by the perturbed flow dictates the movement and the later decay of the ridge. The ridge amplification, opposed by the horizontal advection of PV, is driven by the vertical advection and the diabatic production of PV, both of which are connected to diabatic heating. The vital role of diabatic heating in the ridge amplification is corroborated by the trajectory analysis. The analysis suggests that diabatic heating reduces the static stability near the tropopause and contributes to the ridge-related negative PV anomalies. The role of diabatic heating in anticyclonic and cyclonic wave breaking in other regions is also discussed. The findings suggest that moist diabatic processes, which were often excluded from the earlier studies of wave breaking, are crucial for Rossby wave breaking during the warm season. The updated understanding of wave breaking may benefit weather forecasting and climate predictions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gan Zhang, gzhang13@illinois.edu

Abstract

This study investigates the life cycle of anticyclonic Rossby wave breaking during the extended warm season (July–October) over the North Atlantic basin. It was found that upper-tropospheric breaking waves are coupled with lower-level perturbations and can be traced back to a wave train that extends from the North Pacific. The overturning of potential vorticity (PV) contours during wave breaking is associated with the rapid development of an upper-level ridge, which occurs along the east coast of North America and over a warm and moist airstream. The ridge development is investigated using the PV budget analysis and trajectory analysis. The PV budget analysis suggests that the horizontal advection of PV by the perturbed flow dictates the movement and the later decay of the ridge. The ridge amplification, opposed by the horizontal advection of PV, is driven by the vertical advection and the diabatic production of PV, both of which are connected to diabatic heating. The vital role of diabatic heating in the ridge amplification is corroborated by the trajectory analysis. The analysis suggests that diabatic heating reduces the static stability near the tropopause and contributes to the ridge-related negative PV anomalies. The role of diabatic heating in anticyclonic and cyclonic wave breaking in other regions is also discussed. The findings suggest that moist diabatic processes, which were often excluded from the earlier studies of wave breaking, are crucial for Rossby wave breaking during the warm season. The updated understanding of wave breaking may benefit weather forecasting and climate predictions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gan Zhang, gzhang13@illinois.edu
Save