• Aguilar, E., and et al. , 2009: Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res., 114, D02115, https://doi.org/10.1029/2008JD011010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardilouze, C., L. Batté, and M. Déqué, 2017: Subseasonal-to-seasonal (S2S) forecasts with CNRM-CM: A case study on the July 2015 west-European heat wave. Adv. Sci. Res., 14, 115121, https://doi.org/10.5194/asr-14-115-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbier, J., F. Guichard, D. Bouniol, F. Couvreux, and R. Roehrig, 2018: Detection of intraseasonal large-scale heat waves: Characteristics and historical trends during the Sahelian spring. J. Climate, 31, 6180, https://doi.org/10.1175/JCLI-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batté, L., and M. Déqué, 2011: Seasonal predictions of precipitation over Africa using coupled ocean–atmosphere general circulation models: Skill of the ENSEMBLES project multimodel ensemble forecasts. Tellus, 63A, 283299, https://doi.org/10.1111/j.1600-0870.2010.00493.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batté, L., and M. Déqué, 2016: Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: Applications for seasonal forecasts. Geosci. Model Dev., 9, 20552076, https://doi.org/10.5194/gmd-9-2055-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhend, J., I. Mahlstein, and M. A. Liniger, 2017: Predictive skill of climate indices compared to mean quantities in seasonal forecasts. Quart. J. Roy. Meteor. Soc., 143, 184194, https://doi.org/10.1002/qj.2908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunet, G., and et al. , 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406, https://doi.org/10.1175/2010BAMS3013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cariolle, D., and M. Déqué, 1986: Southern Hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91, 10 82510 846, https://doi.org/10.1029/JD091iD10p10825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceccherini, G., S. Russo, I. Ameztoy, A. F. Marchese, and C. Carmona-Moreno, 2017: Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazards Earth Syst. Sci., 17, 115125, https://doi.org/10.5194/nhess-17-115-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, D., 2011: Adapting climate research for development in Africa. Wiley Interdiscip. Rev.: Climate Change, 2, 428450, https://doi.org/10.1002/wcc.115.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2012: Deterministic forecasts of continuous variables. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed. I. Jolliffe and D. Stephenson, Eds., John Wiley & Sons, 77–94, https://doi.org/10.1002/9781119960003.ch5.

    • Crossref
    • Export Citation
  • Déqué, M., S. Calmanti, O. B. Christensen, A. Dell Aquila, C. F. Maule, A. Haensler, G. Nikulin, and C. Teichmann, 2017: A multi-model climate response over tropical Africa at +2°C. Climate Serv., 7, 8795, https://doi.org/10.1016/j.cliser.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., J. García-Serrano, F. Lienert, A. Pintó Biescas, and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, https://doi.org/10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., 2017: Projection of temperature and heat waves for Africa with an ensemble of CORDEX regional climate models. Climate Dyn., 49, 493519, https://doi.org/10.1007/s00382-016-3355-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferry, N., and et al. , 2010: Mercator global eddy permitting ocean reanalysis GLORYS1V1: Description and results. Mercator Ocean Quarterly Newsletter, No. 36, Mercator-Ocean, Ramonville-Saint-Agne, France, 15–27, https://www.mercator-ocean.fr/sciences-publications/mercator-ocean-journal/newsletter-36-data-assimilation-and-its-application-to-ocean-reanalyses/.

  • Fischer, E., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, https://doi.org/10.1038/ngeo866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Janicot, and P.-A. Monerie, 2013: Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa. J. Geophys. Res. Atmos., 118, 85368552, https://doi.org/10.1002/jgrd.50667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gounou, A., F. Guichard, and F. Couvreux, 2012: Observations of diurnal cycles over a West African meridional transect: Pre-monsoon and full-monsoon seasons. Bound.-Layer Meteor., 144, 329357, https://doi.org/10.1007/s10546-012-9723-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and et al. , 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, E., R. Eade, R. J. Graham, A. A. Scaife, D. M. Smith, A. Maidens, and C. MacLachlan, 2012: Forecasting the number of extreme daily events on seasonal timescales. J. Geophys. Res., 117, D03114, https://doi.org/10.1029/2011JD016541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc., 137, 673689, https://doi.org/10.1002/qj.769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, O. Alves, G. Young, D. Jones, and A. Watkins, 2016: Forewarned is forearmed: Extended-range forecast guidance of recent extreme heat events in Australia. Wea. Forecasting, 31, 697711, https://doi.org/10.1175/WAF-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazenby, M. J., W. A. Landman, R. M. Garland, and D. G. DeWitt, 2014: Seasonal temperature prediction skill over southern Africa and human health. Meteor. Appl., 21, 963974, https://doi.org/10.1002/met.1449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and T. Brenner, 2015: Perceived temperature in the course of climate change: An analysis of global heat index from 1979 to 2013. Earth Syst. Sci. Data, 7, 193202, https://doi.org/10.5194/essd-7-193-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., and et al. , 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, https://doi.org/10.1002/jgrd.50705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R., M. García-Díez, J. Ballester, J. Creswick, J.-M. Robine, F. R. Herrmann, and X. Rodó, 2016: Evaluation of an early-warning system for heat wave-related mortality in Europe: Implications for sub-seasonal to seasonal forecasting and climate services. Int. J. Environ. Res. Public Health, 13, 206, https://doi.org/10.3390/ijerph13020206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ly, M., S. B. Traore, A. Alhassane, and B. Sarr, 2013: Evolution of some observed climate extremes in the West African Sahel. Wea. Climate Extremes, 1, 1925, https://doi.org/10.1016/j.wace.2013.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. IPSL Note du Pôle de modélisation 27, 396 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Mahlstein, I., C. Spirig, M. A. Liniger, and C. Appenzeller, 2015: Estimating daily climatologies for climate indices derived from climate model data and observations. J. Geophys. Res. Atmos., 120, 28082818, https://doi.org/10.1002/2014JD022327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., and et al. , 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, https://doi.org/10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., O. Bellprat, V. Guemas, and F. Doblas-Reyes, 2016: Using climate models to estimate the quality of global observational data sets. Science, 354, 452455, https://doi.org/10.1126/science.aaf6369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and et al. , 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Moron, V., A. W. Robertson, M. N. Ward, and O. Ndiaye, 2008: Weather types and rainfall over Senegal. Part I: Observational analysis. J. Climate, 21, 266287, https://doi.org/10.1175/2007JCLI1601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., B. Oueslati, B. Pohl, S. Rome, and S. Janicot, 2016: Trends of mean temperatures and warm extremes in northern tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. J. Geophys. Res. Atmos., 121, 52985319, https://doi.org/10.1002/2015JD024303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, A. G., L. Goddard, A. W. Robertson, Y. Kushnir, and W. Baethgen, 2015: Cross–time scale interactions and rainfall extreme events in southeastern South America for the austral summer. Part I: Potential predictors. J. Climate, 28, 78947913, https://doi.org/10.1175/JCLI-D-14-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, A. G., L. Goddard, S. J. Mason, and A. W. Robertson, 2016: Cross–time scale interactions and rainfall extreme events in southeastern South America for the austral summer. Part II: Predictive skill. J. Climate, 29, 59155934, https://doi.org/10.1175/JCLI-D-15-0699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., and et al. , 2006: Evidence of trends in daily climate extremes over southern and West Africa. J. Geophys. Res., 111, D14102, https://doi.org/10.1029/2005JD006289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA NCEI, 2016: State of the Climate: Global Climate Report–April 2016. NOAA National Centers for Environmental Information, accessed 7 June 2017, https://www.ncdc.noaa.gov/sotc/global/201604.

  • Oueslati, B., B. Pohl, V. Moron, S. Rome, and S. Janicot, 2017: Characterization of heat waves in the Sahel and associated physical mechanisms. J. Climate, 30, 30953115, https://doi.org/10.1175/JCLI-D-16-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., L. B. Díaz, C. Prodhomme, F. J. Doblas-Reyes, and A. Kumar, 2015: The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Wea. Climate Extremes, 9, 6877, https://doi.org/10.1016/j.wace.2015.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review of the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philippon, N., F. J. Doblas-Reyes, and P. M. Ruti, 2010: Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs. Climate Dyn., 35, 5374, https://doi.org/10.1007/s00382-010-0856-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and et al. , 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, https://doi.org/10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and et al. , 2013: A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat.:An Overview, 1, 17, https://doi.org/10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Russo, S., and et al. , 2014: Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., 119, 12 50012 512, https://doi.org/10.1002/2014JD022098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and L. Feudale, 2010: Seasonal ensemble predictions of West African monsoon precipitation in the ECMWF System 3 with a focus on the AMMA special observing period in 2006. Wea. Forecasting, 25, 768788, https://doi.org/10.1175/2009WAF2222236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2006: OASIS3 user guide. CERFACS Tech. Rep. TR/CMGC/06/73, 60 pp., http://www.cerfacs.fr/oa4web/papers_oasis/oasis3_UserGuide.pdf.

  • Vellinga, M., A. Arribas, and R. Graham, 2013: Seasonal forecasts for regional onset of the West African monsoon. Climate Dyn., 40, 30473070, https://doi.org/10.1007/s00382-012-1520-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and et al. , 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, https://doi.org/10.1029/2007GL030740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and et al. , 2017: The Subseasonal to Seasonal (S2S) Prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, C. J., and et al. , 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 193 15
PDF Downloads 167 167 15

Forecasting West African Heat Waves at Subseasonal and Seasonal Time Scales

View More View Less
  • 1 CNRM UMR 3589 (Météo-France/CNRS), Toulouse, France
© Get Permissions
Restricted access

Abstract

Early indication of an increased risk of extremely warm conditions could help alleviate some of the consequences of severe heat waves on human health. This study focuses on boreal spring heat wave events over West Africa and the Sahel and examines the long-range predictability and forecast quality of these events with two coupled forecasting systems designed at Météo-France, both based on the CNRM-CM coupled global climate model: the operational seasonal forecasting System 5 and the experimental contribution to the World Weather Research Programme/World Climate Research Programme (WWRP/WCRP) subseasonal-to-seasonal (S2S) project. Evaluation is based on past reforecasts spanning 22 years, from 1993 to 2014, compared to reference data from reanalyses. On the seasonal time scale, skill in reproducing interannual anomalies of heat wave duration is limited at a gridpoint level but is significant for regional averages. Subseasonal predictability of daily humidity-corrected apparent temperature drops sharply beyond the deterministic range. In addition to reforecast skill measures, the analysis of real-time forecasts for 2016, both in terms of anomalies with respect to the reforecast climatology and using a weather-type approach, provides additional insight on the systems’ performance in giving relevant information on the possible occurrence of such events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0211.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lauriane Batté, lauriane.batte@meteo.fr

Abstract

Early indication of an increased risk of extremely warm conditions could help alleviate some of the consequences of severe heat waves on human health. This study focuses on boreal spring heat wave events over West Africa and the Sahel and examines the long-range predictability and forecast quality of these events with two coupled forecasting systems designed at Météo-France, both based on the CNRM-CM coupled global climate model: the operational seasonal forecasting System 5 and the experimental contribution to the World Weather Research Programme/World Climate Research Programme (WWRP/WCRP) subseasonal-to-seasonal (S2S) project. Evaluation is based on past reforecasts spanning 22 years, from 1993 to 2014, compared to reference data from reanalyses. On the seasonal time scale, skill in reproducing interannual anomalies of heat wave duration is limited at a gridpoint level but is significant for regional averages. Subseasonal predictability of daily humidity-corrected apparent temperature drops sharply beyond the deterministic range. In addition to reforecast skill measures, the analysis of real-time forecasts for 2016, both in terms of anomalies with respect to the reforecast climatology and using a weather-type approach, provides additional insight on the systems’ performance in giving relevant information on the possible occurrence of such events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0211.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lauriane Batté, lauriane.batte@meteo.fr

Supplementary Materials

    • Supplemental Materials (PDF 3.54 MB)
Save