Synoptic Environments and Characteristics of Convection Reaching the Tropopause over Northeast China

Nana Liu Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Nana Liu in
Current site
Google Scholar
PubMed
Close
and
Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Overshooting convection that penetrates the lapse rate tropopause is defined globally using 3 years of Global Precipitation Measurement (GPM) observations and ERA-Interim data. Overshooting convection in the subtropics is mainly found over a few hot spot regions, including central North America and Argentina. A relatively high density of events with overshooting convection is also found over northeast China in the summer months, where 203 events are identified during 2014–16. These convective events extending above the tropopause occur under various synoptic conditions. The synoptic conditions during these events are categorized into three different types, namely, trough, cutoff low, and ridge types, with a subjective analysis based on the wind and pressure fields at 500 hPa. The precipitation systems with overshooting convection ahead of a deep trough have larger sizes than other types. Those in the cutoff low environment are mostly embedded within a large precipitation system. The ridge-type systems have a stable midtroposphere and a high moist instability at low levels and are mostly isolated convective systems, characterized by smaller sizes, higher radar echo top, and larger convective area and precipitation fraction than the other two types.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Overshooting convection that penetrates the lapse rate tropopause is defined globally using 3 years of Global Precipitation Measurement (GPM) observations and ERA-Interim data. Overshooting convection in the subtropics is mainly found over a few hot spot regions, including central North America and Argentina. A relatively high density of events with overshooting convection is also found over northeast China in the summer months, where 203 events are identified during 2014–16. These convective events extending above the tropopause occur under various synoptic conditions. The synoptic conditions during these events are categorized into three different types, namely, trough, cutoff low, and ridge types, with a subjective analysis based on the wind and pressure fields at 500 hPa. The precipitation systems with overshooting convection ahead of a deep trough have larger sizes than other types. Those in the cutoff low environment are mostly embedded within a large precipitation system. The ridge-type systems have a stable midtroposphere and a high moist instability at low levels and are mostly isolated convective systems, characterized by smaller sizes, higher radar echo top, and larger convective area and precipitation fraction than the other two types.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, https://doi.org/10.1029/2009JD013411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107, 4792, https://doi.org/10.1029/2002JD002457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, D. J., P. G. W. Healey, B. M. R. Jones, S. A. Penkett, A. F. Tuck, and G. Vaughan, 1984: Vertical profiles of tropospheric gases: Chemical consequences of stratospheric intrusions. Atmos. Environ., 18, 17591766, https://doi.org/10.1016/0004-6981(84)90351-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227242, https://doi.org/10.1175/1520-0469(1952)009<0227:TWAEBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1961: Lee side frontogenesis in the Rocky Mountains. Mon. Wea. Rev., 89, 163172, https://doi.org/10.1175/1520-0493(1961)089<0163:LFITRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474, https://doi.org/10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2011: Relating passive 37-GHz scattering to radar profiles in strong convection. J. Appl. Meteor. Climatol., 50, 233240, https://doi.org/10.1175/2010JAMC2506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, https://doi.org/10.1175/MWR-2876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. J., and S. S. Chi, 1990: The effects of cold core lows on Taiwan weather in warm months (in Chinese). Meteor. Bull., 36, 315326.

    • Search Google Scholar
    • Export Citation
  • Chisholm, A. J., and J. H. Renick, 1972: The kinematics of multi-cell and supercell Alberta hailstorms. Research Council of Alberta Hail Studies Rep. 722, 24–31.

  • Davis, C. A., 1997: The modification of baroclinic waves by the Rocky Mountains. J. Atmos. Sci., 54, 848868, https://doi.org/10.1175/1520-0469(1997)054<0848:TMOBWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze, 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 18351850, https://doi.org/10.1175/1520-0469(1983)040<1835:WBOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., D. G. Puyol, E. H. Martín, L. G. Presa, and P. R. Rodríguez, 2001: Influence of the North Atlantic Oscillation on the Canary Islands precipitation. J. Climate, 14, 38893903, https://doi.org/10.1175/1520-0442(2001)014<3889:IOTNAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 25442559, https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., E. Hernández, A. Rúa, and R. García, and I. Martín, 1999: Surface ozone in Spain. Chemosphere, 38, 30613074, https://doi.org/10.1016/S0045-6535(98)00513-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM/DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, H. G., 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meteor., 7, 851859, https://doi.org/10.1175/1520-0450(1968)007<0851:OPMATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, K. S. Virts, J. M. Wallace, and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 23902394, https://doi.org/10.1002/grl.50406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. A. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891, https://doi.org/10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2016: Global distribution of deep convection reaching tropopause in 1 year GPM observations. J. Geophys. Res. Atmos., 121, 38243842, https://doi.org/10.1002/2015JD024430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., and Coauthors, 2005: Climatological features of cutoff low systems in the Northern Hemisphere. J. Climate, 18, 30853103, https://doi.org/10.1175/JCLI3386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., M. Sprenger, H. Wernli, R. M. Trigo, and L. Gimeno, 2008: Identification and climatology of cut-off lows near the tropopause. Ann. N. Y. Acad. Sci., 1146, 256290, https://doi.org/10.1196/annals.1446.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1999: Moisture balance over China and the South China Sea during the summer monsoon in 1991 in relation to the intense rainfalls over China. J. Meteor. Soc. Japan, 77, 737751, https://doi.org/10.2151/jmsj1965.77.3_737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmans, S., and Coauthors, 1996: Summer and spring ozone profiles over the North Atlantic from ozonesonde measurements. J. Geophys. Res., 101, 29 17929 200, https://doi.org/10.1029/96JD01713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1949: Origin and structure of high-level cyclones south of the maximum westerlies. Tellus, 1, 2231, https://doi.org/10.1111/j.2153-3490.1949.tb01925.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., and K. M. Nagler, 1949: The formation and structure of a large-scale disturbance in the westerlies. J. Meteor., 6, 228242, https://doi.org/10.1175/1520-0469(1949)006<0228:TFASOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze, 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze, 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, L., Y. Yang, L. Jin, B. Han, and M. Guan, 2014: Numerical simulation on a rainstorm process caused by Northeast China cold vortex and its diagnostic analysis. J. Meteor. Environ., 30, 1925.

    • Search Google Scholar
    • Export Citation
  • Rockwood, A. A., and R. A. Maddox, 1988: Mesoscale and synoptic scale interactions leading to intense convection: The case of 7 June 1982. Wea. Forecasting, 3, 5168, https://doi.org/10.1175/1520-0434(1988)003<0051:MASSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, and R. L. Dowden, 2005: Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys., 23, 277290, https://doi.org/10.5194/angeo-23-277-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the premonsoon season of South Asia. J. Hydrometeor., 12, 157180, https://doi.org/10.1175/2010JHM1311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M. and C. A. Doswell, 2000: Analyzing and forecasting Rocky Mountain lee cyclogenesis often associated with strong winds. Wea. Forecasting, 15, 152173, https://doi.org/10.1175/1520-0434(2000)015<0152:AAFRML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C., H. Li, B. Zheng, and D. Guo, 2013: An atypical cold vortex structure and its precipitation over Northeast China based on Cloudsat detection (in Chinese). Chin. J. Geophys., 56, 25942602, https://doi.org/10.6038/cjg20130809.

    • Search Google Scholar
    • Export Citation
  • Solomon, D. L., K. P. Bowman, and C. R. Homeyer, 2016: Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteor. Climatol., 55, 465478, https://doi.org/10.1175/JAMC-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and D. A. Santek, 1985: Measuring the global distribution of intense convection over land with passive microwave radiometery. J. Climate Appl. Meteor., 24, 860864, https://doi.org/10.1175/1520-0450(1985)024<0860:MTGDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountains lee trough. Mon. Wea. Rev., 122, 27402761, https://doi.org/10.1175/1520-0493(1994)122<2740:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., 1997: A study of the persistence activity of northeast cold vortex in China. Sci. Atmos. Sin., 21, 297307.

  • Sun, L., X. Y. Zheng, and Q. Wang, 1994: The climatological characteristics of northeast cold vortex in China (in Chinese). Quart. J. Appl. Meteor., 5, 297303.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and R. E. Carbone, 2004: Coherent regeneration and the role of water vapor and shear in a long-lived convective episode. Mon. Wea. Rev., 132, 192208, https://doi.org/10.1175/1520-0493(2004)132<0192:CRATRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Coauthors, 2007: Advances in the study of rainstorm in northeast China (in Chinese). Adv. Earth Sci., 22, 549560.

  • Wang, P., C. Shen, and S. Gao, 2012: A numerical study and rainfall analysis of a cold vortex process over Northeast China (in Chinese). Chin. J. Atmos. Sci., 36, 130144.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., IV (4), 134–138.

  • Wu, T.-Y., 1976: An observational study of the cold core low in the upper troposphere in Far East in summer (in Chinese). Atmos. Sci., 3, 111.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. M. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. V. Ledvina, and C. W. Fairall, 1992: Influence of precipitating convection on the surface energy budget observed during a Tropical Ocean Global Atmosphere pilot cruise in the tropical western Pacific Ocean. J. Geophys. Res., 97, 95959603, https://doi.org/10.1029/92JC00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Zhang, Y. Wang, and X. Liang, 2008: Climatology of warm season cold vortices in East Asia: 1979–2005. Meteor. Atmos. Phys., 100, 291301, https://doi.org/10.1007/s00703-008-0310-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E., C. Liu, D. Cecil, S. W. Nesbitt, and S. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M., and R. A. Houze, 2015: Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298316, https://doi.org/10.1175/MWR-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 554 178 4
PDF Downloads 461 78 4